Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Nov 2023 (v1), last revised 27 Nov 2023 (this version, v2)]
Title:Towards Omni-supervised Referring Expression Segmentation
View PDFAbstract:Referring Expression Segmentation (RES) is an emerging task in computer vision, which segments the target instances in images based on text descriptions. However, its development is plagued by the expensive segmentation labels. To address this issue, we propose a new learning task for RES called Omni-supervised Referring Expression Segmentation (Omni-RES), which aims to make full use of unlabeled, fully labeled and weakly labeled data, e.g., referring points or grounding boxes, for efficient RES training. To accomplish this task, we also propose a novel yet strong baseline method for Omni-RES based on the recently popular teacher-student learning, where the weak labels are not directly transformed into supervision signals but used as a yardstick to select and refine high-quality pseudo-masks for teacher-student learning. To validate the proposed Omni-RES method, we apply it to a set of state-of-the-art RES models and conduct extensive experiments on a bunch of RES datasets. The experimental results yield the obvious merits of Omni-RES than the fully-supervised and semi-supervised training schemes. For instance, with only 10% fully labeled data, Omni-RES can help the base model achieve 100% fully supervised performance, and it also outperform the semi-supervised alternative by a large margin, e.g., +14.93% on RefCOCO and +14.95% on RefCOCO+, respectively. More importantly, Omni-RES also enable the use of large-scale vision-langauges like Visual Genome to facilitate low-cost RES training, and achieve new SOTA performance of RES, e.g., 80.66 on RefCOCO.
Submission history
From: Minglang Huang [view email][v1] Wed, 1 Nov 2023 09:46:59 UTC (372 KB)
[v2] Mon, 27 Nov 2023 09:02:06 UTC (321 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.