Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Nov 2023 (v1), last revised 16 Aug 2024 (this version, v4)]
Title:CeCNN: Copula-enhanced convolutional neural networks in joint prediction of refraction error and axial length based on ultra-widefield fundus images
View PDF HTML (experimental)Abstract:The ultra-widefield (UWF) fundus image is an attractive 3D biomarker in AI-aided myopia screening because it provides much richer myopia-related information. Though axial length (AL) has been acknowledged to be highly related to the two key targets of myopia screening, Spherical Equivalence (SE) measurement and high myopia diagnosis, its prediction based on the UWF fundus image is rarely considered. To save the high expense and time costs of measuring SE and AL, we propose the Copula-enhanced Convolutional Neural Network (CeCNN), a one-stop UWF-based ophthalmic AI framework to jointly predict SE, AL, and myopia status. The CeCNN formulates a multiresponse regression that relates multiple dependent discrete-continuous responses and the image covariate, where the nonlinearity of the association is modeled by a backbone CNN. To thoroughly describe the dependence structure among the responses, we model and incorporate the conditional dependence among responses in a CNN through a new copula-likelihood loss. We provide statistical interpretations of the conditional dependence among responses, and reveal that such dependence is beyond the dependence explained by the image covariate. We heuristically justify that the proposed loss can enhance the estimation efficiency of the CNN weights. We apply the CeCNN to the UWF dataset collected by us and demonstrate that the CeCNN sharply enhances the predictive capability of various backbone CNNs. Our study evidences the ophthalmology view that besides SE, AL is also an important measure to myopia.
Submission history
From: Yang Li [view email][v1] Tue, 7 Nov 2023 13:06:50 UTC (10,626 KB)
[v2] Sat, 1 Jun 2024 09:14:56 UTC (8,892 KB)
[v3] Tue, 23 Jul 2024 12:27:37 UTC (16,646 KB)
[v4] Fri, 16 Aug 2024 15:18:05 UTC (8,386 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.