Computer Science > Computation and Language
[Submitted on 15 Nov 2023 (v1), last revised 27 Jan 2024 (this version, v3)]
Title:Knowledge Graph Construction in Power Distribution Networks
View PDFAbstract:In this paper, we propose a method for knowledge graph construction in power distribution networks. This method leverages entity features, which involve their semantic, phonetic, and syntactic characteristics, in both the knowledge graph of distribution network and the dispatching texts. An enhanced model based on Convolutional Neural Network, is utilized for effectively matching dispatch text entities with those in the knowledge graph. The effectiveness of this model is evaluated through experiments in real-world power distribution dispatch scenarios. The results indicate that, compared with the baselines, the proposed model excels in linking a variety of entity types, demonstrating high overall accuracy in power distribution knowledge graph construction task.
Submission history
From: Sizhe Li [view email][v1] Wed, 15 Nov 2023 06:35:01 UTC (359 KB)
[v2] Sun, 14 Jan 2024 23:44:15 UTC (319 KB)
[v3] Sat, 27 Jan 2024 07:15:54 UTC (319 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.