Computer Science > Machine Learning
[Submitted on 26 Nov 2023 (v1), last revised 22 May 2024 (this version, v2)]
Title:Understanding the Countably Infinite: Neural Network Models of the Successor Function and its Acquisition
View PDF HTML (experimental)Abstract:As children enter elementary school, their understanding of the ordinal structure of numbers transitions from a memorized count list of the first 50-100 numbers to knowing the successor function and understanding the countably infinite. We investigate this developmental change in two neural network models that learn the successor function on the pairs (N, N+1) for N in (0, 98). The first uses a one-hot encoding of the input and output values and corresponds to children memorizing a count list, while the second model uses a place-value encoding and corresponds to children learning the language rules for naming numbers. The place-value model showed a predicted drop in representational similarity across tens boundaries. Counting across a tens boundary can be understood as a vector operation in 2D space, where the numbers with the same tens place are organized in a linearly separable manner, whereas those with the same ones place are grouped together. A curriculum learning simulation shows that, in the expanding numerical environment of the developing child, representations of smaller numbers continue to be sharpened even as larger numbers begin to be learned. These models set the stage for future work using recurrent architectures to move beyond learning the successor function to simulating the counting process more generally, and point towards a deeper understanding of what it means to understand the countably infinite.
Submission history
From: Vima Gupta [view email][v1] Sun, 26 Nov 2023 05:17:45 UTC (5,008 KB)
[v2] Wed, 22 May 2024 00:19:39 UTC (5,045 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.