Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Dec 2023]
Title:ASC: Adaptive Scale Feature Map Compression for Deep Neural Network
View PDF HTML (experimental)Abstract:Deep-learning accelerators are increasingly in demand; however, their performance is constrained by the size of the feature map, leading to high bandwidth requirements and large buffer sizes. We propose an adaptive scale feature map compression technique leveraging the unique properties of the feature map. This technique adopts independent channel indexing given the weak channel correlation and utilizes a cubical-like block shape to benefit from strong local correlations. The method further optimizes compression using a switchable endpoint mode and adaptive scale interpolation to handle unimodal data distributions, both with and without outliers. This results in 4$\times$ and up to 7.69$\times$ compression rates for 16-bit data in constant and variable bitrates, respectively. Our hardware design minimizes area cost by adjusting interpolation scales, which facilitates hardware sharing among interpolation points. Additionally, we introduce a threshold concept for straightforward interpolation, preventing the need for intricate hardware. The TSMC 28nm implementation showcases an equivalent gate count of 6135 for the 8-bit version. Furthermore, the hardware architecture scales effectively, with only a sublinear increase in area cost. Achieving a 32$\times$ throughput increase meets the theoretical bandwidth of DDR5-6400 at just 7.65$\times$ the hardware cost.
Submission history
From: Tian-Sheuan Chang [view email][v1] Wed, 13 Dec 2023 14:36:08 UTC (13,731 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.