Computer Science > Neural and Evolutionary Computing
[Submitted on 21 Nov 2023]
Title:Learning with Chemical versus Electrical Synapses -- Does it Make a Difference?
View PDF HTML (experimental)Abstract:Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems. Bio-electrical synapses directly transmit neural signals, by enabling fast current flow between neurons. In contrast, bio-chemical synapses transmit neural signals indirectly, through neurotransmitters. Prior work showed that interpretable dynamics for complex robotic control, can be achieved by using chemical synapses, within a sparse, bio-inspired architecture, called Neural Circuit Policies (NCPs). However, a comparison of these two synaptic models, within the same architecture, remains an unexplored area. In this work we aim to determine the impact of using chemical synapses compared to electrical synapses, in both sparse and all-to-all connected networks. We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions and in the presence of noise. The experiments highlight the substantial influence of the architectural and synaptic-model choices, respectively. Our results show that employing chemical synapses yields noticeable improvements compared to electrical synapses, and that NCPs lead to better results in both synaptic models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.