Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jan 2024]
Title:Towards Image Semantics and Syntax Sequence Learning
View PDF HTML (experimental)Abstract:Convolutional neural networks and vision transformers have achieved outstanding performance in machine perception, particularly for image classification. Although these image classifiers excel at predicting image-level class labels, they may not discriminate missing or shifted parts within an object. As a result, they may fail to detect corrupted images that involve missing or disarrayed semantic information in the object composition. On the contrary, human perception easily distinguishes such corruptions. To mitigate this gap, we introduce the concept of "image grammar", consisting of "image semantics" and "image syntax", to denote the semantics of parts or patches of an image and the order in which these parts are arranged to create a meaningful object. To learn the image grammar relative to a class of visual objects/scenes, we propose a weakly supervised two-stage approach. In the first stage, we use a deep clustering framework that relies on iterative clustering and feature refinement to produce part-semantic segmentation. In the second stage, we incorporate a recurrent bi-LSTM module to process a sequence of semantic segmentation patches to capture the image syntax. Our framework is trained to reason over patch semantics and detect faulty syntax. We benchmark the performance of several grammar learning models in detecting patch corruptions. Finally, we verify the capabilities of our framework in Celeb and SUNRGBD datasets and demonstrate that it can achieve a grammar validation accuracy of 70 to 90% in a wide variety of semantic and syntactical corruption scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.