Computer Science > Computation and Language
[Submitted on 18 Feb 2024 (v1), last revised 17 Jun 2024 (this version, v2)]
Title:ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models
View PDF HTML (experimental)Abstract:Large vision-language models (LVLMs) have shown premise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities. However, they require considerable computational resources for training and deployment. This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data. To this end, we propose a comprehensive pipeline for generating a synthetic dataset. The key idea is to leverage strong proprietary models to generate (i) fine-grained image annotations for vision-language alignment and (ii) complex reasoning visual question-answering pairs for visual instruction fine-tuning, yielding 1.3M samples in total. We train a series of lite VLMs on the synthetic dataset and experimental results demonstrate the effectiveness of the proposed scheme, where they achieve competitive performance on 17 benchmarks among 4B LVLMs, and even perform on par with 7B/13B-scale models on various benchmarks. This work highlights the feasibility of adopting high-quality data in crafting more efficient LVLMs. We name our dataset \textit{ALLaVA}, and open-source it to research community for developing better resource-efficient LVLMs for wider usage.
Submission history
From: Guiming Hardy Chen [view email][v1] Sun, 18 Feb 2024 19:26:49 UTC (2,577 KB)
[v2] Mon, 17 Jun 2024 07:55:59 UTC (2,872 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.