Computer Science > Human-Computer Interaction
[Submitted on 27 Mar 2024]
Title:The Correlations of Scene Complexity, Workload, Presence, and Cybersickness in a Task-Based VR Game
View PDFAbstract:This investigation examined the relationships among scene complexity, workload, presence, and cybersickness in virtual reality (VR) environments. Numerous factors can influence the overall VR experience, and existing research on this matter is not yet conclusive, warranting further investigation. In this between-subjects experimental setup, 44 participants engaged in the Pendulum Chair game, with half exposed to a simple scene with lower optic flow and lower familiarity, and the remaining half to a complex scene characterized by higher optic flow and greater familiarity. The study measured the dependent variables workload, presence, and cybersickness and analyzed their correlations. Equivalence testing was also used to compare the simple and complex environments. Results revealed that despite the visible differences between the environments, within the 10% boundaries of the maximum possible value for workload and presence, and 13.6% of the maximum SSQ value, a statistically significant equivalence was observed between the simple and complex scenes. Additionally, a moderate, negative correlation emerged between workload and SSQ scores. The findings suggest two key points: (1) the nature of the task can mitigate the impact of scene complexity factors such as optic flow and familiarity, and (2) the correlation between workload and cybersickness may vary, showing either a positive or negative relationship.
Submission history
From: Mohammadamin Sanaei [view email][v1] Wed, 27 Mar 2024 21:21:58 UTC (293 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.