Computer Science > Information Retrieval
[Submitted on 30 Mar 2024]
Title:A Unified Framework for Adaptive Representation Enhancement and Inversed Learning in Cross-Domain Recommendation
View PDF HTML (experimental)Abstract:Cross-domain recommendation (CDR), aiming to extract and transfer knowledge across domains, has attracted wide attention for its efficacy in addressing data sparsity and cold-start problems. Despite significant advances in representation disentanglement to capture diverse user preferences, existing methods usually neglect representation enhancement and lack rigorous decoupling constraints, thereby limiting the transfer of relevant information. To this end, we propose a Unified Framework for Adaptive Representation Enhancement and Inversed Learning in Cross-Domain Recommendation (AREIL). Specifically, we first divide user embeddings into domain-shared and domain-specific components to disentangle mixed user preferences. Then, we incorporate intra-domain and inter-domain information to adaptively enhance the ability of user representations. In particular, we propose a graph convolution module to capture high-order information, and a self-attention module to reveal inter-domain correlations and accomplish adaptive fusion. Next, we adopt domain classifiers and gradient reversal layers to achieve inversed representation learning in a unified framework. Finally, we employ a cross-entropy loss for measuring recommendation performance and jointly optimize the entire framework via multi-task learning. Extensive experiments on multiple datasets validate the substantial improvement in the recommendation performance of AREIL. Moreover, ablation studies and representation visualizations further illustrate the effectiveness of adaptive enhancement and inversed learning in CDR.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.