Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 3 May 2024]
Title:Towards Building Autonomous Data Services on Azure
View PDF HTML (experimental)Abstract:Modern cloud has turned data services into easily accessible commodities. With just a few clicks, users are now able to access a catalog of data processing systems for a wide range of tasks. However, the cloud brings in both complexity and opportunity. While cloud users can quickly start an application by using various data services, it can be difficult to configure and optimize these services to gain the most value from them. For cloud providers, managing every aspect of an ever-increasing set of data services, while meeting customer SLAs and minimizing operational cost is becoming more challenging. Cloud technology enables the collection of significant amounts of workload traces and system telemetry. With the progress in data science (DS) and machine learning (ML), it is feasible and desirable to utilize a data-driven, ML-based approach to automate various aspects of data services, resulting in the creation of autonomous data services. This paper presents our perspectives and insights on creating autonomous data services on Azure. It also covers the future endeavors we plan to undertake and unresolved issues that still need attention.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.