Computer Science > Information Theory
[Submitted on 29 May 2024]
Title:Computing Low-Entropy Couplings for Large-Support Distributions
View PDF HTML (experimental)Abstract:Minimum-entropy coupling (MEC) -- the process of finding a joint distribution with minimum entropy for given marginals -- has applications in areas such as causality and steganography. However, existing algorithms are either computationally intractable for large-support distributions or limited to specific distribution types and sensitive to hyperparameter choices. This work addresses these limitations by unifying a prior family of iterative MEC (IMEC) approaches into a generalized partition-based formalism. From this framework, we derive a novel IMEC algorithm called ARIMEC, capable of handling arbitrary discrete distributions, and introduce a method to make IMEC robust to suboptimal hyperparameter settings. These innovations facilitate the application of IMEC to high-throughput steganography with language models, among other settings. Our codebase is available at this https URL .
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.