Computer Science > Machine Learning
[Submitted on 20 Jun 2024 (v1), last revised 10 Oct 2024 (this version, v2)]
Title:Consistency Models Made Easy
View PDF HTML (experimental)Abstract:Consistency models (CMs) offer faster sampling than traditional diffusion models, but their training is resource-intensive. For example, as of 2024, training a state-of-the-art CM on CIFAR-10 takes one week on 8 GPUs. In this work, we propose an effective scheme for training CMs that largely improves the efficiency of building such models. Specifically, by expressing CM trajectories via a particular differential equation, we argue that diffusion models can be viewed as a special case of CMs. We can thus fine-tune a consistency model starting from a pretrained diffusion model and progressively approximate the full consistency condition to stronger degrees over the training process. Our resulting method, which we term Easy Consistency Tuning (ECT), achieves vastly reduced training times while improving upon the quality of previous methods: for example, ECT achieves a 2-step FID of 2.73 on CIFAR10 within 1 hour on a single A100 GPU, matching Consistency Distillation trained for hundreds of GPU hours. Owing to this computational efficiency, we investigate the scaling laws of CMs under ECT, showing that they obey the classic power law scaling, hinting at their ability to improve efficiency and performance at larger scales. Our code (this https URL) is publicly available, making CMs more accessible to the broader community.
Submission history
From: Zhengyang Geng [view email][v1] Thu, 20 Jun 2024 17:56:02 UTC (6,728 KB)
[v2] Thu, 10 Oct 2024 21:59:49 UTC (6,762 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.