Computer Science > Machine Learning
[Submitted on 31 Jul 2024]
Title:Root Cause Analysis Of Productivity Losses In Manufacturing Systems Utilizing Ensemble Machine Learning
View PDFAbstract:In today's rapidly evolving landscape of automation and manufacturing systems, the efficient resolution of productivity losses is paramount. This study introduces a data-driven ensemble approach, utilizing the cyclic multivariate time series data from binary sensors and signals from Programmable Logic Controllers (PLCs) within these systems. The objective is to automatically analyze productivity losses per cycle and pinpoint their root causes by assigning the loss to a system element. The ensemble approach introduced in this publication integrates various methods, including information theory and machine learning behavior models, to provide a robust analysis for each production cycle. To expedite the resolution of productivity losses and ensure short response times, stream processing becomes a necessity. Addressing this, the approach is implemented as data-stream analysis and can be transferred to batch processing, seamlessly integrating into existing systems without the need for extensive historical data analysis. This method has two positive effects. Firstly, the result of the analysis ensures that the period of lower productivity is reduced by identifying the likely root cause of the productivity loss. Secondly, these results are more reliable due to the ensemble approach and therefore avoid dependency on technical experts. The approach is validated using a semi-automated welding manufacturing system, an injection molding automation system, and a synthetically generated test PLC dataset. The results demonstrate the method's efficacy in offering a data-driven understanding of process behavior and mark an advancement in autonomous manufacturing system analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.