Computer Science > Multimedia
[Submitted on 23 Aug 2024]
Title:VCEMO: Multi-Modal Emotion Recognition for Chinese Voiceprints
View PDFAbstract:Emotion recognition can enhance humanized machine responses to user commands, while voiceprint-based perception systems can be easily integrated into commonly used devices like smartphones and stereos. Despite having the largest number of speakers, there is a noticeable absence of high-quality corpus datasets for emotion recognition using Chinese voiceprints. Hence, this paper introduces the VCEMO dataset to address this deficiency. The proposed dataset is constructed from everyday conversations and comprises over 100 users and 7,747 textual samples. Furthermore, this paper proposes a multimodal-based model as a benchmark, which effectively fuses speech, text, and external knowledge using a co-attention structure. The system employs contrastive learning-based regulation for the uneven distribution of the dataset and the diversity of emotional expressions. The experiments demonstrate the significant improvement of the proposed model over SOTA on the VCEMO and IEMOCAP datasets. Code and dataset will be released for research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.