Computer Science > Machine Learning
[Submitted on 9 Jan 2025]
Title:Shrink the longest: improving latent space isotropy with symplicial geometry
View PDF HTML (experimental)Abstract:Although transformer-based models have been dominating the field of deep learning, various studies of their embedding space have shown that they suffer from "representation degeneration problem": embeddings tend to be distributed in a narrow cone, making the latent space highly anisotropic. Increasing the isotropy has shown to improve performance in downstream tasks both in static and contextual language models. However, most of approaches either add inference overhead or require substantial amount of data for model reparametrization. We propose a novel regularization technique based on simplicial geometry to improve the isotropy of latent representations. The core idea of our method is based on maximizing the persistent entropy of barcodes obtained using Vietoris-Rips filtration from contextual embeddings in the underlying latent space. We demonstrate that the method leads to an increase in downstream performance while significantly lowering the anisotropy during fine-tuning by exploiting existing geometric structures instead of reparametrization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.