PostgreSQL Source Code git master
setrefs.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * setrefs.c
4 * Post-processing of a completed plan tree: fix references to subplan
5 * vars, compute regproc values for operators, etc
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/plan/setrefs.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include "access/transam.h"
19#include "catalog/pg_type.h"
20#include "nodes/makefuncs.h"
21#include "nodes/nodeFuncs.h"
22#include "optimizer/optimizer.h"
23#include "optimizer/pathnode.h"
24#include "optimizer/planmain.h"
25#include "optimizer/planner.h"
26#include "optimizer/subselect.h"
27#include "optimizer/tlist.h"
30#include "tcop/utility.h"
31#include "utils/syscache.h"
32
33
34typedef enum
35{
36 NRM_EQUAL, /* expect exact match of nullingrels */
37 NRM_SUBSET, /* actual Var may have a subset of input */
38 NRM_SUPERSET, /* actual Var may have a superset of input */
40
41typedef struct
42{
43 int varno; /* RT index of Var */
44 AttrNumber varattno; /* attr number of Var */
45 AttrNumber resno; /* TLE position of Var */
46 Bitmapset *varnullingrels; /* Var's varnullingrels */
48
49typedef struct
50{
51 List *tlist; /* underlying target list */
52 int num_vars; /* number of plain Var tlist entries */
53 bool has_ph_vars; /* are there PlaceHolderVar entries? */
54 bool has_non_vars; /* are there other entries? */
55 tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
57
58typedef struct
59{
62 double num_exec;
64
65typedef struct
66{
73 double num_exec;
75
76typedef struct
77{
83 double num_exec;
85
86typedef struct
87{
92
93/* Context info for flatten_rtes_walker() */
94typedef struct
95{
99
100/*
101 * Selecting the best alternative in an AlternativeSubPlan expression requires
102 * estimating how many times that expression will be evaluated. For an
103 * expression in a plan node's targetlist, the plan's estimated number of
104 * output rows is clearly what to use, but for an expression in a qual it's
105 * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
106 * want to expend a lot of cycles making such estimates. What we use is twice
107 * the number of output rows. That's not entirely unfounded: we know that
108 * clause_selectivity() would fall back to a default selectivity estimate
109 * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
110 * to be applied (which it likely would be, thanks to order_qual_clauses()),
111 * this matches what we could have estimated in a far more laborious fashion.
112 * Obviously there are many other scenarios, but it's probably not worth the
113 * trouble to try to improve on this estimate, especially not when we don't
114 * have a better estimate for the selectivity of the SubPlan qual itself.
115 */
116#define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
117#define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
118
119/*
120 * Check if a Const node is a regclass value. We accept plain OID too,
121 * since a regclass Const will get folded to that type if it's an argument
122 * to oideq or similar operators. (This might result in some extraneous
123 * values in a plan's list of relation dependencies, but the worst result
124 * would be occasional useless replans.)
125 */
126#define ISREGCLASSCONST(con) \
127 (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
128 !(con)->constisnull)
129
130#define fix_scan_list(root, lst, rtoffset, num_exec) \
131 ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
132
133static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
134static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
136static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
137 RangeTblEntry *rte);
138static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
141 int rtoffset);
144 int rtoffset);
145static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
147 ForeignScan *fscan,
148 int rtoffset);
150 CustomScan *cscan,
151 int rtoffset);
153 Append *aplan,
154 int rtoffset);
156 MergeAppend *mplan,
157 int rtoffset);
158static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
159static Relids offset_relid_set(Relids relids, int rtoffset);
160static Node *fix_scan_expr(PlannerInfo *root, Node *node,
161 int rtoffset, double num_exec);
163static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
164static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
165static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
167static Node *convert_combining_aggrefs(Node *node, void *context);
168static void set_dummy_tlist_references(Plan *plan, int rtoffset);
169static indexed_tlist *build_tlist_index(List *tlist);
171 indexed_tlist *itlist,
172 int newvarno,
173 int rtoffset,
174 NullingRelsMatch nrm_match);
176 indexed_tlist *itlist,
177 int newvarno,
178 NullingRelsMatch nrm_match);
180 indexed_tlist *itlist,
181 int newvarno);
183 Index sortgroupref,
184 indexed_tlist *itlist,
185 int newvarno);
187 List *clauses,
188 indexed_tlist *outer_itlist,
189 indexed_tlist *inner_itlist,
190 Index acceptable_rel,
191 int rtoffset,
192 NullingRelsMatch nrm_match,
193 double num_exec);
194static Node *fix_join_expr_mutator(Node *node,
195 fix_join_expr_context *context);
197 Node *node,
198 indexed_tlist *subplan_itlist,
199 int newvarno,
200 int rtoffset,
201 NullingRelsMatch nrm_match,
202 double num_exec);
203static Node *fix_upper_expr_mutator(Node *node,
204 fix_upper_expr_context *context);
206 List *rlist,
207 Plan *topplan,
208 Index resultRelation,
209 int rtoffset);
211 List *runcondition,
212 Plan *plan);
213
214
215/*****************************************************************************
216 *
217 * SUBPLAN REFERENCES
218 *
219 *****************************************************************************/
220
221/*
222 * set_plan_references
223 *
224 * This is the final processing pass of the planner/optimizer. The plan
225 * tree is complete; we just have to adjust some representational details
226 * for the convenience of the executor:
227 *
228 * 1. We flatten the various subquery rangetables into a single list, and
229 * zero out RangeTblEntry fields that are not useful to the executor.
230 *
231 * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
232 *
233 * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
234 * subplans.
235 *
236 * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
237 * partial aggregation or minmax aggregate optimization.
238 *
239 * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
240 * now that we have finished planning all MULTIEXPR subplans.
241 *
242 * 6. AlternativeSubPlan expressions are replaced by just one of their
243 * alternatives, using an estimate of how many times they'll be executed.
244 *
245 * 7. We compute regproc OIDs for operators (ie, we look up the function
246 * that implements each op).
247 *
248 * 8. We create lists of specific objects that the plan depends on.
249 * This will be used by plancache.c to drive invalidation of cached plans.
250 * Relation dependencies are represented by OIDs, and everything else by
251 * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
252 * Currently, relations, user-defined functions, and domains are the only
253 * types of objects that are explicitly tracked this way.
254 *
255 * 9. We assign every plan node in the tree a unique ID.
256 *
257 * We also perform one final optimization step, which is to delete
258 * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
259 * anything useful. The reason for doing this last is that
260 * it can't readily be done before set_plan_references, because it would
261 * break set_upper_references: the Vars in the child plan's top tlist
262 * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
263 * serves a necessary function as a buffer between outer query and subquery
264 * variable numbering ... but after we've flattened the rangetable this is
265 * no longer a problem, since then there's only one rtindex namespace.
266 * Likewise, Append and MergeAppend buffer between the parent and child vars
267 * of an appendrel, but we don't need to worry about that once we've done
268 * set_plan_references.
269 *
270 * set_plan_references recursively traverses the whole plan tree.
271 *
272 * The return value is normally the same Plan node passed in, but can be
273 * different when the passed-in Plan is a node we decide isn't needed.
274 *
275 * The flattened rangetable entries are appended to root->glob->finalrtable.
276 * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
277 * RT indexes of ModifyTable result relations to root->glob->resultRelations,
278 * and flattened AppendRelInfos are appended to root->glob->appendRelations.
279 * Plan dependencies are appended to root->glob->relationOids (for relations)
280 * and root->glob->invalItems (for everything else).
281 *
282 * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
283 * to process targetlist and qual expressions. We can assume that the Plan
284 * nodes were just built by the planner and are not multiply referenced, but
285 * it's not so safe to assume that for expression tree nodes.
286 */
287Plan *
289{
290 Plan *result;
291 PlannerGlobal *glob = root->glob;
292 int rtoffset = list_length(glob->finalrtable);
293 ListCell *lc;
294
295 /*
296 * Add all the query's RTEs to the flattened rangetable. The live ones
297 * will have their rangetable indexes increased by rtoffset. (Additional
298 * RTEs, not referenced by the Plan tree, might get added after those.)
299 */
301
302 /*
303 * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304 */
305 foreach(lc, root->rowMarks)
306 {
308 PlanRowMark *newrc;
309
310 /* flat copy is enough since all fields are scalars */
311 newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
312 memcpy(newrc, rc, sizeof(PlanRowMark));
313
314 /* adjust indexes ... but *not* the rowmarkId */
315 newrc->rti += rtoffset;
316 newrc->prti += rtoffset;
317
318 glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
319 }
320
321 /*
322 * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
323 * We assume the AppendRelInfos were built during planning and don't need
324 * to be copied.
325 */
326 foreach(lc, root->append_rel_list)
327 {
329
330 /* adjust RT indexes */
331 appinfo->parent_relid += rtoffset;
332 appinfo->child_relid += rtoffset;
333
334 /*
335 * Rather than adjust the translated_vars entries, just drop 'em.
336 * Neither the executor nor EXPLAIN currently need that data.
337 */
338 appinfo->translated_vars = NIL;
339
340 glob->appendRelations = lappend(glob->appendRelations, appinfo);
341 }
342
343 /* If needed, create workspace for processing AlternativeSubPlans */
344 if (root->hasAlternativeSubPlans)
345 {
346 root->isAltSubplan = (bool *)
347 palloc0(list_length(glob->subplans) * sizeof(bool));
348 root->isUsedSubplan = (bool *)
349 palloc0(list_length(glob->subplans) * sizeof(bool));
350 }
351
352 /* Now fix the Plan tree */
353 result = set_plan_refs(root, plan, rtoffset);
354
355 /*
356 * If we have AlternativeSubPlans, it is likely that we now have some
357 * unreferenced subplans in glob->subplans. To avoid expending cycles on
358 * those subplans later, get rid of them by setting those list entries to
359 * NULL. (Note: we can't do this immediately upon processing an
360 * AlternativeSubPlan, because there may be multiple copies of the
361 * AlternativeSubPlan, and they can get resolved differently.)
362 */
363 if (root->hasAlternativeSubPlans)
364 {
365 foreach(lc, glob->subplans)
366 {
367 int ndx = foreach_current_index(lc);
368
369 /*
370 * If it was used by some AlternativeSubPlan in this query level,
371 * but wasn't selected as best by any AlternativeSubPlan, then we
372 * don't need it. Do not touch subplans that aren't parts of
373 * AlternativeSubPlans.
374 */
375 if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
376 lfirst(lc) = NULL;
377 }
378 }
379
380 return result;
381}
382
383/*
384 * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
385 *
386 * This can recurse into subquery plans; "recursing" is true if so.
387 *
388 * This also seems like a good place to add the query's RTEPermissionInfos to
389 * the flat rteperminfos.
390 */
391static void
393{
394 PlannerGlobal *glob = root->glob;
395 Index rti;
396 ListCell *lc;
397
398 /*
399 * Add the query's own RTEs to the flattened rangetable.
400 *
401 * At top level, we must add all RTEs so that their indexes in the
402 * flattened rangetable match up with their original indexes. When
403 * recursing, we only care about extracting relation RTEs (and subquery
404 * RTEs that were once relation RTEs).
405 */
406 foreach(lc, root->parse->rtable)
407 {
408 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
409
410 if (!recursing || rte->rtekind == RTE_RELATION ||
411 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
412 add_rte_to_flat_rtable(glob, root->parse->rteperminfos, rte);
413 }
414
415 /*
416 * If there are any dead subqueries, they are not referenced in the Plan
417 * tree, so we must add RTEs contained in them to the flattened rtable
418 * separately. (If we failed to do this, the executor would not perform
419 * expected permission checks for tables mentioned in such subqueries.)
420 *
421 * Note: this pass over the rangetable can't be combined with the previous
422 * one, because that would mess up the numbering of the live RTEs in the
423 * flattened rangetable.
424 */
425 rti = 1;
426 foreach(lc, root->parse->rtable)
427 {
428 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
429
430 /*
431 * We should ignore inheritance-parent RTEs: their contents have been
432 * pulled up into our rangetable already. Also ignore any subquery
433 * RTEs without matching RelOptInfos, as they likewise have been
434 * pulled up.
435 */
436 if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
437 rti < root->simple_rel_array_size)
438 {
439 RelOptInfo *rel = root->simple_rel_array[rti];
440
441 if (rel != NULL)
442 {
443 Assert(rel->relid == rti); /* sanity check on array */
444
445 /*
446 * The subquery might never have been planned at all, if it
447 * was excluded on the basis of self-contradictory constraints
448 * in our query level. In this case apply
449 * flatten_unplanned_rtes.
450 *
451 * If it was planned but the result rel is dummy, we assume
452 * that it has been omitted from our plan tree (see
453 * set_subquery_pathlist), and recurse to pull up its RTEs.
454 *
455 * Otherwise, it should be represented by a SubqueryScan node
456 * somewhere in our plan tree, and we'll pull up its RTEs when
457 * we process that plan node.
458 *
459 * However, if we're recursing, then we should pull up RTEs
460 * whether the subquery is dummy or not, because we've found
461 * that some upper query level is treating this one as dummy,
462 * and so we won't scan this level's plan tree at all.
463 */
464 if (rel->subroot == NULL)
465 flatten_unplanned_rtes(glob, rte);
466 else if (recursing ||
468 UPPERREL_FINAL, NULL)))
470 }
471 }
472 rti++;
473 }
474}
475
476/*
477 * Extract RangeTblEntries from a subquery that was never planned at all
478 */
479
480static void
482{
483 flatten_rtes_walker_context cxt = {glob, rte->subquery};
484
485 /* Use query_tree_walker to find all RTEs in the parse tree */
486 (void) query_tree_walker(rte->subquery,
488 &cxt,
490}
491
492static bool
494{
495 if (node == NULL)
496 return false;
497 if (IsA(node, RangeTblEntry))
498 {
499 RangeTblEntry *rte = (RangeTblEntry *) node;
500
501 /* As above, we need only save relation RTEs and former relations */
502 if (rte->rtekind == RTE_RELATION ||
503 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
504 add_rte_to_flat_rtable(cxt->glob, cxt->query->rteperminfos, rte);
505 return false;
506 }
507 if (IsA(node, Query))
508 {
509 /*
510 * Recurse into subselects. Must update cxt->query to this query so
511 * that the rtable and rteperminfos correspond with each other.
512 */
513 Query *save_query = cxt->query;
514 bool result;
515
516 cxt->query = (Query *) node;
517 result = query_tree_walker((Query *) node,
519 cxt,
521 cxt->query = save_query;
522 return result;
523 }
525}
526
527/*
528 * Add (a copy of) the given RTE to the final rangetable and also the
529 * corresponding RTEPermissionInfo, if any, to final rteperminfos.
530 *
531 * In the flat rangetable, we zero out substructure pointers that are not
532 * needed by the executor; this reduces the storage space and copying cost
533 * for cached plans. We keep only the ctename, alias, eref Alias fields,
534 * which are needed by EXPLAIN, and perminfoindex which is needed by the
535 * executor to fetch the RTE's RTEPermissionInfo.
536 */
537static void
539 RangeTblEntry *rte)
540{
541 RangeTblEntry *newrte;
542
543 /* flat copy to duplicate all the scalar fields */
544 newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
545 memcpy(newrte, rte, sizeof(RangeTblEntry));
546
547 /* zap unneeded sub-structure */
548 newrte->tablesample = NULL;
549 newrte->subquery = NULL;
550 newrte->joinaliasvars = NIL;
551 newrte->joinleftcols = NIL;
552 newrte->joinrightcols = NIL;
553 newrte->join_using_alias = NULL;
554 newrte->functions = NIL;
555 newrte->tablefunc = NULL;
556 newrte->values_lists = NIL;
557 newrte->coltypes = NIL;
558 newrte->coltypmods = NIL;
559 newrte->colcollations = NIL;
560 newrte->groupexprs = NIL;
561 newrte->securityQuals = NIL;
562
563 glob->finalrtable = lappend(glob->finalrtable, newrte);
564
565 /*
566 * If it's a plain relation RTE (or a subquery that was once a view
567 * reference), add the relation OID to relationOids. Also add its new RT
568 * index to the set of relations to be potentially accessed during
569 * execution.
570 *
571 * We do this even though the RTE might be unreferenced in the plan tree;
572 * this would correspond to cases such as views that were expanded, child
573 * tables that were eliminated by constraint exclusion, etc. Schema
574 * invalidation on such a rel must still force rebuilding of the plan.
575 *
576 * Note we don't bother to avoid making duplicate list entries. We could,
577 * but it would probably cost more cycles than it would save.
578 */
579 if (newrte->rtekind == RTE_RELATION ||
580 (newrte->rtekind == RTE_SUBQUERY && OidIsValid(newrte->relid)))
581 {
582 glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
583 glob->allRelids = bms_add_member(glob->allRelids,
584 list_length(glob->finalrtable));
585 }
586
587 /*
588 * Add a copy of the RTEPermissionInfo, if any, corresponding to this RTE
589 * to the flattened global list.
590 */
591 if (rte->perminfoindex > 0)
592 {
593 RTEPermissionInfo *perminfo;
594 RTEPermissionInfo *newperminfo;
595
596 /* Get the existing one from this query's rteperminfos. */
597 perminfo = getRTEPermissionInfo(rteperminfos, newrte);
598
599 /*
600 * Add a new one to finalrteperminfos and copy the contents of the
601 * existing one into it. Note that addRTEPermissionInfo() also
602 * updates newrte->perminfoindex to point to newperminfo in
603 * finalrteperminfos.
604 */
605 newrte->perminfoindex = 0; /* expected by addRTEPermissionInfo() */
606 newperminfo = addRTEPermissionInfo(&glob->finalrteperminfos, newrte);
607 memcpy(newperminfo, perminfo, sizeof(RTEPermissionInfo));
608 }
609}
610
611/*
612 * set_plan_refs: recurse through the Plan nodes of a single subquery level
613 */
614static Plan *
616{
617 ListCell *l;
618
619 if (plan == NULL)
620 return NULL;
621
622 /* Assign this node a unique ID. */
623 plan->plan_node_id = root->glob->lastPlanNodeId++;
624
625 /*
626 * Plan-type-specific fixes
627 */
628 switch (nodeTag(plan))
629 {
630 case T_SeqScan:
631 {
632 SeqScan *splan = (SeqScan *) plan;
633
634 splan->scan.scanrelid += rtoffset;
635 splan->scan.plan.targetlist =
636 fix_scan_list(root, splan->scan.plan.targetlist,
637 rtoffset, NUM_EXEC_TLIST(plan));
638 splan->scan.plan.qual =
639 fix_scan_list(root, splan->scan.plan.qual,
640 rtoffset, NUM_EXEC_QUAL(plan));
641 }
642 break;
643 case T_SampleScan:
644 {
645 SampleScan *splan = (SampleScan *) plan;
646
647 splan->scan.scanrelid += rtoffset;
648 splan->scan.plan.targetlist =
649 fix_scan_list(root, splan->scan.plan.targetlist,
650 rtoffset, NUM_EXEC_TLIST(plan));
651 splan->scan.plan.qual =
652 fix_scan_list(root, splan->scan.plan.qual,
653 rtoffset, NUM_EXEC_QUAL(plan));
654 splan->tablesample = (TableSampleClause *)
656 rtoffset, 1);
657 }
658 break;
659 case T_IndexScan:
660 {
661 IndexScan *splan = (IndexScan *) plan;
662
663 splan->scan.scanrelid += rtoffset;
664 splan->scan.plan.targetlist =
665 fix_scan_list(root, splan->scan.plan.targetlist,
666 rtoffset, NUM_EXEC_TLIST(plan));
667 splan->scan.plan.qual =
668 fix_scan_list(root, splan->scan.plan.qual,
669 rtoffset, NUM_EXEC_QUAL(plan));
670 splan->indexqual =
672 rtoffset, 1);
673 splan->indexqualorig =
675 rtoffset, NUM_EXEC_QUAL(plan));
676 splan->indexorderby =
678 rtoffset, 1);
679 splan->indexorderbyorig =
681 rtoffset, NUM_EXEC_QUAL(plan));
682 }
683 break;
684 case T_IndexOnlyScan:
685 {
686 IndexOnlyScan *splan = (IndexOnlyScan *) plan;
687
688 return set_indexonlyscan_references(root, splan, rtoffset);
689 }
690 break;
691 case T_BitmapIndexScan:
692 {
694
695 splan->scan.scanrelid += rtoffset;
696 /* no need to fix targetlist and qual */
697 Assert(splan->scan.plan.targetlist == NIL);
698 Assert(splan->scan.plan.qual == NIL);
699 splan->indexqual =
700 fix_scan_list(root, splan->indexqual, rtoffset, 1);
701 splan->indexqualorig =
703 rtoffset, NUM_EXEC_QUAL(plan));
704 }
705 break;
706 case T_BitmapHeapScan:
707 {
709
710 splan->scan.scanrelid += rtoffset;
711 splan->scan.plan.targetlist =
712 fix_scan_list(root, splan->scan.plan.targetlist,
713 rtoffset, NUM_EXEC_TLIST(plan));
714 splan->scan.plan.qual =
715 fix_scan_list(root, splan->scan.plan.qual,
716 rtoffset, NUM_EXEC_QUAL(plan));
717 splan->bitmapqualorig =
719 rtoffset, NUM_EXEC_QUAL(plan));
720 }
721 break;
722 case T_TidScan:
723 {
724 TidScan *splan = (TidScan *) plan;
725
726 splan->scan.scanrelid += rtoffset;
727 splan->scan.plan.targetlist =
728 fix_scan_list(root, splan->scan.plan.targetlist,
729 rtoffset, NUM_EXEC_TLIST(plan));
730 splan->scan.plan.qual =
731 fix_scan_list(root, splan->scan.plan.qual,
732 rtoffset, NUM_EXEC_QUAL(plan));
733 splan->tidquals =
735 rtoffset, 1);
736 }
737 break;
738 case T_TidRangeScan:
739 {
740 TidRangeScan *splan = (TidRangeScan *) plan;
741
742 splan->scan.scanrelid += rtoffset;
743 splan->scan.plan.targetlist =
744 fix_scan_list(root, splan->scan.plan.targetlist,
745 rtoffset, NUM_EXEC_TLIST(plan));
746 splan->scan.plan.qual =
747 fix_scan_list(root, splan->scan.plan.qual,
748 rtoffset, NUM_EXEC_QUAL(plan));
749 splan->tidrangequals =
751 rtoffset, 1);
752 }
753 break;
754 case T_SubqueryScan:
755 /* Needs special treatment, see comments below */
757 (SubqueryScan *) plan,
758 rtoffset);
759 case T_FunctionScan:
760 {
761 FunctionScan *splan = (FunctionScan *) plan;
762
763 splan->scan.scanrelid += rtoffset;
764 splan->scan.plan.targetlist =
765 fix_scan_list(root, splan->scan.plan.targetlist,
766 rtoffset, NUM_EXEC_TLIST(plan));
767 splan->scan.plan.qual =
768 fix_scan_list(root, splan->scan.plan.qual,
769 rtoffset, NUM_EXEC_QUAL(plan));
770 splan->functions =
771 fix_scan_list(root, splan->functions, rtoffset, 1);
772 }
773 break;
774 case T_TableFuncScan:
775 {
776 TableFuncScan *splan = (TableFuncScan *) plan;
777
778 splan->scan.scanrelid += rtoffset;
779 splan->scan.plan.targetlist =
780 fix_scan_list(root, splan->scan.plan.targetlist,
781 rtoffset, NUM_EXEC_TLIST(plan));
782 splan->scan.plan.qual =
783 fix_scan_list(root, splan->scan.plan.qual,
784 rtoffset, NUM_EXEC_QUAL(plan));
785 splan->tablefunc = (TableFunc *)
786 fix_scan_expr(root, (Node *) splan->tablefunc,
787 rtoffset, 1);
788 }
789 break;
790 case T_ValuesScan:
791 {
792 ValuesScan *splan = (ValuesScan *) plan;
793
794 splan->scan.scanrelid += rtoffset;
795 splan->scan.plan.targetlist =
796 fix_scan_list(root, splan->scan.plan.targetlist,
797 rtoffset, NUM_EXEC_TLIST(plan));
798 splan->scan.plan.qual =
799 fix_scan_list(root, splan->scan.plan.qual,
800 rtoffset, NUM_EXEC_QUAL(plan));
801 splan->values_lists =
803 rtoffset, 1);
804 }
805 break;
806 case T_CteScan:
807 {
808 CteScan *splan = (CteScan *) plan;
809
810 splan->scan.scanrelid += rtoffset;
811 splan->scan.plan.targetlist =
812 fix_scan_list(root, splan->scan.plan.targetlist,
813 rtoffset, NUM_EXEC_TLIST(plan));
814 splan->scan.plan.qual =
815 fix_scan_list(root, splan->scan.plan.qual,
816 rtoffset, NUM_EXEC_QUAL(plan));
817 }
818 break;
819 case T_NamedTuplestoreScan:
820 {
822
823 splan->scan.scanrelid += rtoffset;
824 splan->scan.plan.targetlist =
825 fix_scan_list(root, splan->scan.plan.targetlist,
826 rtoffset, NUM_EXEC_TLIST(plan));
827 splan->scan.plan.qual =
828 fix_scan_list(root, splan->scan.plan.qual,
829 rtoffset, NUM_EXEC_QUAL(plan));
830 }
831 break;
832 case T_WorkTableScan:
833 {
834 WorkTableScan *splan = (WorkTableScan *) plan;
835
836 splan->scan.scanrelid += rtoffset;
837 splan->scan.plan.targetlist =
838 fix_scan_list(root, splan->scan.plan.targetlist,
839 rtoffset, NUM_EXEC_TLIST(plan));
840 splan->scan.plan.qual =
841 fix_scan_list(root, splan->scan.plan.qual,
842 rtoffset, NUM_EXEC_QUAL(plan));
843 }
844 break;
845 case T_ForeignScan:
847 break;
848 case T_CustomScan:
850 break;
851
852 case T_NestLoop:
853 case T_MergeJoin:
854 case T_HashJoin:
855 set_join_references(root, (Join *) plan, rtoffset);
856 break;
857
858 case T_Gather:
859 case T_GatherMerge:
860 {
861 set_upper_references(root, plan, rtoffset);
863 }
864 break;
865
866 case T_Hash:
867 set_hash_references(root, plan, rtoffset);
868 break;
869
870 case T_Memoize:
871 {
872 Memoize *mplan = (Memoize *) plan;
873
874 /*
875 * Memoize does not evaluate its targetlist. It just uses the
876 * same targetlist from its outer subnode.
877 */
879
880 mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
881 rtoffset,
883 break;
884 }
885
886 case T_Material:
887 case T_Sort:
888 case T_IncrementalSort:
889 case T_Unique:
890 case T_SetOp:
891
892 /*
893 * These plan types don't actually bother to evaluate their
894 * targetlists, because they just return their unmodified input
895 * tuples. Even though the targetlist won't be used by the
896 * executor, we fix it up for possible use by EXPLAIN (not to
897 * mention ease of debugging --- wrong varnos are very confusing).
898 */
900
901 /*
902 * Since these plan types don't check quals either, we should not
903 * find any qual expression attached to them.
904 */
905 Assert(plan->qual == NIL);
906 break;
907 case T_LockRows:
908 {
909 LockRows *splan = (LockRows *) plan;
910
911 /*
912 * Like the plan types above, LockRows doesn't evaluate its
913 * tlist or quals. But we have to fix up the RT indexes in
914 * its rowmarks.
915 */
917 Assert(splan->plan.qual == NIL);
918
919 foreach(l, splan->rowMarks)
920 {
921 PlanRowMark *rc = (PlanRowMark *) lfirst(l);
922
923 rc->rti += rtoffset;
924 rc->prti += rtoffset;
925 }
926 }
927 break;
928 case T_Limit:
929 {
930 Limit *splan = (Limit *) plan;
931
932 /*
933 * Like the plan types above, Limit doesn't evaluate its tlist
934 * or quals. It does have live expressions for limit/offset,
935 * however; and those cannot contain subplan variable refs, so
936 * fix_scan_expr works for them.
937 */
939 Assert(splan->plan.qual == NIL);
940
941 splan->limitOffset =
942 fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
943 splan->limitCount =
944 fix_scan_expr(root, splan->limitCount, rtoffset, 1);
945 }
946 break;
947 case T_Agg:
948 {
949 Agg *agg = (Agg *) plan;
950
951 /*
952 * If this node is combining partial-aggregation results, we
953 * must convert its Aggrefs to contain references to the
954 * partial-aggregate subexpressions that will be available
955 * from the child plan node.
956 */
958 {
959 plan->targetlist = (List *)
960 convert_combining_aggrefs((Node *) plan->targetlist,
961 NULL);
962 plan->qual = (List *)
964 NULL);
965 }
966
967 set_upper_references(root, plan, rtoffset);
968 }
969 break;
970 case T_Group:
971 set_upper_references(root, plan, rtoffset);
972 break;
973 case T_WindowAgg:
974 {
975 WindowAgg *wplan = (WindowAgg *) plan;
976
977 /*
978 * Adjust the WindowAgg's run conditions by swapping the
979 * WindowFuncs references out to instead reference the Var in
980 * the scan slot so that when the executor evaluates the
981 * runCondition, it receives the WindowFunc's value from the
982 * slot that the result has just been stored into rather than
983 * evaluating the WindowFunc all over again.
984 */
986 wplan->runCondition,
987 (Plan *) wplan);
988
989 set_upper_references(root, plan, rtoffset);
990
991 /*
992 * Like Limit node limit/offset expressions, WindowAgg has
993 * frame offset expressions, which cannot contain subplan
994 * variable refs, so fix_scan_expr works for them.
995 */
996 wplan->startOffset =
997 fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
998 wplan->endOffset =
999 fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
1001 wplan->runCondition,
1002 rtoffset,
1005 wplan->runConditionOrig,
1006 rtoffset,
1008 }
1009 break;
1010 case T_Result:
1011 {
1012 Result *splan = (Result *) plan;
1013
1014 /*
1015 * Result may or may not have a subplan; if not, it's more
1016 * like a scan node than an upper node.
1017 */
1018 if (splan->plan.lefttree != NULL)
1019 set_upper_references(root, plan, rtoffset);
1020 else
1021 {
1022 /*
1023 * The tlist of a childless Result could contain
1024 * unresolved ROWID_VAR Vars, in case it's representing a
1025 * target relation which is completely empty because of
1026 * constraint exclusion. Replace any such Vars by null
1027 * constants, as though they'd been resolved for a leaf
1028 * scan node that doesn't support them. We could have
1029 * fix_scan_expr do this, but since the case is only
1030 * expected to occur here, it seems safer to special-case
1031 * it here and keep the assertions that ROWID_VARs
1032 * shouldn't be seen by fix_scan_expr.
1033 */
1034 foreach(l, splan->plan.targetlist)
1035 {
1036 TargetEntry *tle = (TargetEntry *) lfirst(l);
1037 Var *var = (Var *) tle->expr;
1038
1039 if (var && IsA(var, Var) && var->varno == ROWID_VAR)
1040 tle->expr = (Expr *) makeNullConst(var->vartype,
1041 var->vartypmod,
1042 var->varcollid);
1043 }
1044
1045 splan->plan.targetlist =
1047 rtoffset, NUM_EXEC_TLIST(plan));
1048 splan->plan.qual =
1049 fix_scan_list(root, splan->plan.qual,
1050 rtoffset, NUM_EXEC_QUAL(plan));
1051 }
1052 /* resconstantqual can't contain any subplan variable refs */
1053 splan->resconstantqual =
1054 fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
1055 }
1056 break;
1057 case T_ProjectSet:
1058 set_upper_references(root, plan, rtoffset);
1059 break;
1060 case T_ModifyTable:
1061 {
1062 ModifyTable *splan = (ModifyTable *) plan;
1063 Plan *subplan = outerPlan(splan);
1064
1065 Assert(splan->plan.targetlist == NIL);
1066 Assert(splan->plan.qual == NIL);
1067
1068 splan->withCheckOptionLists =
1070 rtoffset, 1);
1071
1072 if (splan->returningLists)
1073 {
1074 List *newRL = NIL;
1075 ListCell *lcrl,
1076 *lcrr;
1077
1078 /*
1079 * Pass each per-resultrel returningList through
1080 * set_returning_clause_references().
1081 */
1083 forboth(lcrl, splan->returningLists,
1084 lcrr, splan->resultRelations)
1085 {
1086 List *rlist = (List *) lfirst(lcrl);
1087 Index resultrel = lfirst_int(lcrr);
1088
1090 rlist,
1091 subplan,
1092 resultrel,
1093 rtoffset);
1094 newRL = lappend(newRL, rlist);
1095 }
1096 splan->returningLists = newRL;
1097
1098 /*
1099 * Set up the visible plan targetlist as being the same as
1100 * the first RETURNING list. This is mostly for the use
1101 * of EXPLAIN; the executor won't execute that targetlist,
1102 * although it does use it to prepare the node's result
1103 * tuple slot. We postpone this step until here so that
1104 * we don't have to do set_returning_clause_references()
1105 * twice on identical targetlists.
1106 */
1107 splan->plan.targetlist = copyObject(linitial(newRL));
1108 }
1109
1110 /*
1111 * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
1112 * join', where the inner side is the EXCLUDED tuple.
1113 * Therefore use fix_join_expr to setup the relevant variables
1114 * to INNER_VAR. We explicitly don't create any OUTER_VARs as
1115 * those are already used by RETURNING and it seems better to
1116 * be non-conflicting.
1117 */
1118 if (splan->onConflictSet)
1119 {
1120 indexed_tlist *itlist;
1121
1122 itlist = build_tlist_index(splan->exclRelTlist);
1123
1124 splan->onConflictSet =
1126 NULL, itlist,
1128 rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1129
1130 splan->onConflictWhere = (Node *)
1132 NULL, itlist,
1134 rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1135
1136 pfree(itlist);
1137
1138 splan->exclRelTlist =
1139 fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
1140 }
1141
1142 /*
1143 * The MERGE statement produces the target rows by performing
1144 * a right join between the target relation and the source
1145 * relation (which could be a plain relation or a subquery).
1146 * The INSERT and UPDATE actions of the MERGE statement
1147 * require access to the columns from the source relation. We
1148 * arrange things so that the source relation attributes are
1149 * available as INNER_VAR and the target relation attributes
1150 * are available from the scan tuple.
1151 */
1152 if (splan->mergeActionLists != NIL)
1153 {
1154 List *newMJC = NIL;
1155 ListCell *lca,
1156 *lcj,
1157 *lcr;
1158
1159 /*
1160 * Fix the targetList of individual action nodes so that
1161 * the so-called "source relation" Vars are referenced as
1162 * INNER_VAR. Note that for this to work correctly during
1163 * execution, the ecxt_innertuple must be set to the tuple
1164 * obtained by executing the subplan, which is what
1165 * constitutes the "source relation".
1166 *
1167 * We leave the Vars from the result relation (i.e. the
1168 * target relation) unchanged i.e. those Vars would be
1169 * picked from the scan slot. So during execution, we must
1170 * ensure that ecxt_scantuple is setup correctly to refer
1171 * to the tuple from the target relation.
1172 */
1173 indexed_tlist *itlist;
1174
1175 itlist = build_tlist_index(subplan->targetlist);
1176
1178 lcj, splan->mergeJoinConditions,
1179 lcr, splan->resultRelations)
1180 {
1181 List *mergeActionList = lfirst(lca);
1182 Node *mergeJoinCondition = lfirst(lcj);
1183 Index resultrel = lfirst_int(lcr);
1184
1185 foreach(l, mergeActionList)
1186 {
1188
1189 /* Fix targetList of each action. */
1190 action->targetList = fix_join_expr(root,
1191 action->targetList,
1192 NULL, itlist,
1193 resultrel,
1194 rtoffset,
1195 NRM_EQUAL,
1197
1198 /* Fix quals too. */
1199 action->qual = (Node *) fix_join_expr(root,
1200 (List *) action->qual,
1201 NULL, itlist,
1202 resultrel,
1203 rtoffset,
1204 NRM_EQUAL,
1206 }
1207
1208 /* Fix join condition too. */
1209 mergeJoinCondition = (Node *)
1211 (List *) mergeJoinCondition,
1212 NULL, itlist,
1213 resultrel,
1214 rtoffset,
1215 NRM_EQUAL,
1217 newMJC = lappend(newMJC, mergeJoinCondition);
1218 }
1219 splan->mergeJoinConditions = newMJC;
1220 }
1221
1222 splan->nominalRelation += rtoffset;
1223 if (splan->rootRelation)
1224 splan->rootRelation += rtoffset;
1225 splan->exclRelRTI += rtoffset;
1226
1227 foreach(l, splan->resultRelations)
1228 {
1229 lfirst_int(l) += rtoffset;
1230 }
1231 foreach(l, splan->rowMarks)
1232 {
1233 PlanRowMark *rc = (PlanRowMark *) lfirst(l);
1234
1235 rc->rti += rtoffset;
1236 rc->prti += rtoffset;
1237 }
1238
1239 /*
1240 * Append this ModifyTable node's final result relation RT
1241 * index(es) to the global list for the plan.
1242 */
1243 root->glob->resultRelations =
1244 list_concat(root->glob->resultRelations,
1245 splan->resultRelations);
1246 if (splan->rootRelation)
1247 {
1248 root->glob->resultRelations =
1249 lappend_int(root->glob->resultRelations,
1250 splan->rootRelation);
1251 }
1252 }
1253 break;
1254 case T_Append:
1255 /* Needs special treatment, see comments below */
1257 (Append *) plan,
1258 rtoffset);
1259 case T_MergeAppend:
1260 /* Needs special treatment, see comments below */
1262 (MergeAppend *) plan,
1263 rtoffset);
1264 case T_RecursiveUnion:
1265 /* This doesn't evaluate targetlist or check quals either */
1267 Assert(plan->qual == NIL);
1268 break;
1269 case T_BitmapAnd:
1270 {
1271 BitmapAnd *splan = (BitmapAnd *) plan;
1272
1273 /* BitmapAnd works like Append, but has no tlist */
1274 Assert(splan->plan.targetlist == NIL);
1275 Assert(splan->plan.qual == NIL);
1276 foreach(l, splan->bitmapplans)
1277 {
1279 (Plan *) lfirst(l),
1280 rtoffset);
1281 }
1282 }
1283 break;
1284 case T_BitmapOr:
1285 {
1286 BitmapOr *splan = (BitmapOr *) plan;
1287
1288 /* BitmapOr works like Append, but has no tlist */
1289 Assert(splan->plan.targetlist == NIL);
1290 Assert(splan->plan.qual == NIL);
1291 foreach(l, splan->bitmapplans)
1292 {
1294 (Plan *) lfirst(l),
1295 rtoffset);
1296 }
1297 }
1298 break;
1299 default:
1300 elog(ERROR, "unrecognized node type: %d",
1301 (int) nodeTag(plan));
1302 break;
1303 }
1304
1305 /*
1306 * Now recurse into child plans, if any
1307 *
1308 * NOTE: it is essential that we recurse into child plans AFTER we set
1309 * subplan references in this plan's tlist and quals. If we did the
1310 * reference-adjustments bottom-up, then we would fail to match this
1311 * plan's var nodes against the already-modified nodes of the children.
1312 */
1313 plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1314 plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1315
1316 return plan;
1317}
1318
1319/*
1320 * set_indexonlyscan_references
1321 * Do set_plan_references processing on an IndexOnlyScan
1322 *
1323 * This is unlike the handling of a plain IndexScan because we have to
1324 * convert Vars referencing the heap into Vars referencing the index.
1325 * We can use the fix_upper_expr machinery for that, by working from a
1326 * targetlist describing the index columns.
1327 */
1328static Plan *
1331 int rtoffset)
1332{
1333 indexed_tlist *index_itlist;
1334 List *stripped_indextlist;
1335 ListCell *lc;
1336
1337 /*
1338 * Vars in the plan node's targetlist, qual, and recheckqual must only
1339 * reference columns that the index AM can actually return. To ensure
1340 * this, remove non-returnable columns (which are marked as resjunk) from
1341 * the indexed tlist. We can just drop them because the indexed_tlist
1342 * machinery pays attention to TLE resnos, not physical list position.
1343 */
1344 stripped_indextlist = NIL;
1345 foreach(lc, plan->indextlist)
1346 {
1347 TargetEntry *indextle = (TargetEntry *) lfirst(lc);
1348
1349 if (!indextle->resjunk)
1350 stripped_indextlist = lappend(stripped_indextlist, indextle);
1351 }
1352
1353 index_itlist = build_tlist_index(stripped_indextlist);
1354
1355 plan->scan.scanrelid += rtoffset;
1356 plan->scan.plan.targetlist = (List *)
1358 (Node *) plan->scan.plan.targetlist,
1359 index_itlist,
1360 INDEX_VAR,
1361 rtoffset,
1362 NRM_EQUAL,
1363 NUM_EXEC_TLIST((Plan *) plan));
1364 plan->scan.plan.qual = (List *)
1366 (Node *) plan->scan.plan.qual,
1367 index_itlist,
1368 INDEX_VAR,
1369 rtoffset,
1370 NRM_EQUAL,
1371 NUM_EXEC_QUAL((Plan *) plan));
1372 plan->recheckqual = (List *)
1374 (Node *) plan->recheckqual,
1375 index_itlist,
1376 INDEX_VAR,
1377 rtoffset,
1378 NRM_EQUAL,
1379 NUM_EXEC_QUAL((Plan *) plan));
1380 /* indexqual is already transformed to reference index columns */
1381 plan->indexqual = fix_scan_list(root, plan->indexqual,
1382 rtoffset, 1);
1383 /* indexorderby is already transformed to reference index columns */
1384 plan->indexorderby = fix_scan_list(root, plan->indexorderby,
1385 rtoffset, 1);
1386 /* indextlist must NOT be transformed to reference index columns */
1387 plan->indextlist = fix_scan_list(root, plan->indextlist,
1388 rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1389
1390 pfree(index_itlist);
1391
1392 return (Plan *) plan;
1393}
1394
1395/*
1396 * set_subqueryscan_references
1397 * Do set_plan_references processing on a SubqueryScan
1398 *
1399 * We try to strip out the SubqueryScan entirely; if we can't, we have
1400 * to do the normal processing on it.
1401 */
1402static Plan *
1405 int rtoffset)
1406{
1407 RelOptInfo *rel;
1408 Plan *result;
1409
1410 /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1411 rel = find_base_rel(root, plan->scan.scanrelid);
1412
1413 /* Recursively process the subplan */
1414 plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1415
1417 {
1418 /*
1419 * We can omit the SubqueryScan node and just pull up the subplan.
1420 */
1421 result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1422 }
1423 else
1424 {
1425 /*
1426 * Keep the SubqueryScan node. We have to do the processing that
1427 * set_plan_references would otherwise have done on it. Notice we do
1428 * not do set_upper_references() here, because a SubqueryScan will
1429 * always have been created with correct references to its subplan's
1430 * outputs to begin with.
1431 */
1432 plan->scan.scanrelid += rtoffset;
1433 plan->scan.plan.targetlist =
1434 fix_scan_list(root, plan->scan.plan.targetlist,
1435 rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1436 plan->scan.plan.qual =
1437 fix_scan_list(root, plan->scan.plan.qual,
1438 rtoffset, NUM_EXEC_QUAL((Plan *) plan));
1439
1440 result = (Plan *) plan;
1441 }
1442
1443 return result;
1444}
1445
1446/*
1447 * trivial_subqueryscan
1448 * Detect whether a SubqueryScan can be deleted from the plan tree.
1449 *
1450 * We can delete it if it has no qual to check and the targetlist just
1451 * regurgitates the output of the child plan.
1452 *
1453 * This can be called from mark_async_capable_plan(), a helper function for
1454 * create_append_plan(), before set_subqueryscan_references(), to determine
1455 * triviality of a SubqueryScan that is a child of an Append node. So we
1456 * cache the result in the SubqueryScan node to avoid repeated computation.
1457 *
1458 * Note: when called from mark_async_capable_plan(), we determine the result
1459 * before running finalize_plan() on the SubqueryScan node (if needed) and
1460 * set_plan_references() on the subplan tree, but this would be safe, because
1461 * 1) finalize_plan() doesn't modify the tlist or quals for the SubqueryScan
1462 * node (or that for any plan node in the subplan tree), and
1463 * 2) set_plan_references() modifies the tlist for every plan node in the
1464 * subplan tree, but keeps const/resjunk columns as const/resjunk ones and
1465 * preserves the length and order of the tlist, and
1466 * 3) set_plan_references() might delete the topmost plan node like an Append
1467 * or MergeAppend from the subplan tree and pull up the child plan node,
1468 * but in that case, the tlist for the child plan node exactly matches the
1469 * parent.
1470 */
1471bool
1473{
1474 int attrno;
1475 ListCell *lp,
1476 *lc;
1477
1478 /* We might have detected this already; in which case reuse the result */
1479 if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1480 return true;
1481 if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1482 return false;
1483 Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1484 /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1485 plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1486
1487 if (plan->scan.plan.qual != NIL)
1488 return false;
1489
1490 if (list_length(plan->scan.plan.targetlist) !=
1491 list_length(plan->subplan->targetlist))
1492 return false; /* tlists not same length */
1493
1494 attrno = 1;
1495 forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1496 {
1497 TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1498 TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1499
1500 if (ptle->resjunk != ctle->resjunk)
1501 return false; /* tlist doesn't match junk status */
1502
1503 /*
1504 * We accept either a Var referencing the corresponding element of the
1505 * subplan tlist, or a Const equaling the subplan element. See
1506 * generate_setop_tlist() for motivation.
1507 */
1508 if (ptle->expr && IsA(ptle->expr, Var))
1509 {
1510 Var *var = (Var *) ptle->expr;
1511
1512 Assert(var->varno == plan->scan.scanrelid);
1513 Assert(var->varlevelsup == 0);
1514 if (var->varattno != attrno)
1515 return false; /* out of order */
1516 }
1517 else if (ptle->expr && IsA(ptle->expr, Const))
1518 {
1519 if (!equal(ptle->expr, ctle->expr))
1520 return false;
1521 }
1522 else
1523 return false;
1524
1525 attrno++;
1526 }
1527
1528 /* Re-mark the SubqueryScan as deletable from the plan tree */
1529 plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1530
1531 return true;
1532}
1533
1534/*
1535 * clean_up_removed_plan_level
1536 * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1537 *
1538 * We are dropping the "parent" plan in favor of returning just its "child".
1539 * A few small tweaks are needed.
1540 */
1541static Plan *
1543{
1544 /*
1545 * We have to be sure we don't lose any initplans, so move any that were
1546 * attached to the parent plan to the child. If any are parallel-unsafe,
1547 * the child is no longer parallel-safe. As a cosmetic matter, also add
1548 * the initplans' run costs to the child's costs.
1549 */
1550 if (parent->initPlan)
1551 {
1552 Cost initplan_cost;
1553 bool unsafe_initplans;
1554
1556 &initplan_cost, &unsafe_initplans);
1557 child->startup_cost += initplan_cost;
1558 child->total_cost += initplan_cost;
1559 if (unsafe_initplans)
1560 child->parallel_safe = false;
1561
1562 /*
1563 * Attach plans this way so that parent's initplans are processed
1564 * before any pre-existing initplans of the child. Probably doesn't
1565 * matter, but let's preserve the ordering just in case.
1566 */
1567 child->initPlan = list_concat(parent->initPlan,
1568 child->initPlan);
1569 }
1570
1571 /*
1572 * We also have to transfer the parent's column labeling info into the
1573 * child, else columns sent to client will be improperly labeled if this
1574 * is the topmost plan level. resjunk and so on may be important too.
1575 */
1577
1578 return child;
1579}
1580
1581/*
1582 * set_foreignscan_references
1583 * Do set_plan_references processing on a ForeignScan
1584 */
1585static void
1587 ForeignScan *fscan,
1588 int rtoffset)
1589{
1590 /* Adjust scanrelid if it's valid */
1591 if (fscan->scan.scanrelid > 0)
1592 fscan->scan.scanrelid += rtoffset;
1593
1594 if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1595 {
1596 /*
1597 * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1598 * foreign scan tuple
1599 */
1601
1602 fscan->scan.plan.targetlist = (List *)
1604 (Node *) fscan->scan.plan.targetlist,
1605 itlist,
1606 INDEX_VAR,
1607 rtoffset,
1608 NRM_EQUAL,
1609 NUM_EXEC_TLIST((Plan *) fscan));
1610 fscan->scan.plan.qual = (List *)
1612 (Node *) fscan->scan.plan.qual,
1613 itlist,
1614 INDEX_VAR,
1615 rtoffset,
1616 NRM_EQUAL,
1617 NUM_EXEC_QUAL((Plan *) fscan));
1618 fscan->fdw_exprs = (List *)
1620 (Node *) fscan->fdw_exprs,
1621 itlist,
1622 INDEX_VAR,
1623 rtoffset,
1624 NRM_EQUAL,
1625 NUM_EXEC_QUAL((Plan *) fscan));
1626 fscan->fdw_recheck_quals = (List *)
1628 (Node *) fscan->fdw_recheck_quals,
1629 itlist,
1630 INDEX_VAR,
1631 rtoffset,
1632 NRM_EQUAL,
1633 NUM_EXEC_QUAL((Plan *) fscan));
1634 pfree(itlist);
1635 /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1636 fscan->fdw_scan_tlist =
1637 fix_scan_list(root, fscan->fdw_scan_tlist,
1638 rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1639 }
1640 else
1641 {
1642 /*
1643 * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1644 * way
1645 */
1646 fscan->scan.plan.targetlist =
1647 fix_scan_list(root, fscan->scan.plan.targetlist,
1648 rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1649 fscan->scan.plan.qual =
1650 fix_scan_list(root, fscan->scan.plan.qual,
1651 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1652 fscan->fdw_exprs =
1653 fix_scan_list(root, fscan->fdw_exprs,
1654 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1655 fscan->fdw_recheck_quals =
1656 fix_scan_list(root, fscan->fdw_recheck_quals,
1657 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1658 }
1659
1660 fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
1661 fscan->fs_base_relids = offset_relid_set(fscan->fs_base_relids, rtoffset);
1662
1663 /* Adjust resultRelation if it's valid */
1664 if (fscan->resultRelation > 0)
1665 fscan->resultRelation += rtoffset;
1666}
1667
1668/*
1669 * set_customscan_references
1670 * Do set_plan_references processing on a CustomScan
1671 */
1672static void
1674 CustomScan *cscan,
1675 int rtoffset)
1676{
1677 ListCell *lc;
1678
1679 /* Adjust scanrelid if it's valid */
1680 if (cscan->scan.scanrelid > 0)
1681 cscan->scan.scanrelid += rtoffset;
1682
1683 if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1684 {
1685 /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1687
1688 cscan->scan.plan.targetlist = (List *)
1690 (Node *) cscan->scan.plan.targetlist,
1691 itlist,
1692 INDEX_VAR,
1693 rtoffset,
1694 NRM_EQUAL,
1695 NUM_EXEC_TLIST((Plan *) cscan));
1696 cscan->scan.plan.qual = (List *)
1698 (Node *) cscan->scan.plan.qual,
1699 itlist,
1700 INDEX_VAR,
1701 rtoffset,
1702 NRM_EQUAL,
1703 NUM_EXEC_QUAL((Plan *) cscan));
1704 cscan->custom_exprs = (List *)
1706 (Node *) cscan->custom_exprs,
1707 itlist,
1708 INDEX_VAR,
1709 rtoffset,
1710 NRM_EQUAL,
1711 NUM_EXEC_QUAL((Plan *) cscan));
1712 pfree(itlist);
1713 /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1714 cscan->custom_scan_tlist =
1715 fix_scan_list(root, cscan->custom_scan_tlist,
1716 rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1717 }
1718 else
1719 {
1720 /* Adjust tlist, qual, custom_exprs in the standard way */
1721 cscan->scan.plan.targetlist =
1722 fix_scan_list(root, cscan->scan.plan.targetlist,
1723 rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1724 cscan->scan.plan.qual =
1725 fix_scan_list(root, cscan->scan.plan.qual,
1726 rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1727 cscan->custom_exprs =
1728 fix_scan_list(root, cscan->custom_exprs,
1729 rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1730 }
1731
1732 /* Adjust child plan-nodes recursively, if needed */
1733 foreach(lc, cscan->custom_plans)
1734 {
1735 lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1736 }
1737
1738 cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
1739}
1740
1741/*
1742 * register_partpruneinfo
1743 * Subroutine for set_append_references and set_mergeappend_references
1744 *
1745 * Add the PartitionPruneInfo from root->partPruneInfos at the given index
1746 * into PlannerGlobal->partPruneInfos and return its index there.
1747 *
1748 * Also update the RT indexes present in PartitionedRelPruneInfos to add the
1749 * offset.
1750 *
1751 * Finally, if there are initial pruning steps, add the RT indexes of the
1752 * leaf partitions to the set of relations that are prunable at execution
1753 * startup time.
1754 */
1755static int
1756register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
1757{
1758 PlannerGlobal *glob = root->glob;
1759 PartitionPruneInfo *pinfo;
1760 ListCell *l;
1761
1762 Assert(part_prune_index >= 0 &&
1763 part_prune_index < list_length(root->partPruneInfos));
1764 pinfo = list_nth_node(PartitionPruneInfo, root->partPruneInfos,
1765 part_prune_index);
1766
1767 pinfo->relids = offset_relid_set(pinfo->relids, rtoffset);
1768 foreach(l, pinfo->prune_infos)
1769 {
1770 List *prune_infos = lfirst(l);
1771 ListCell *l2;
1772
1773 foreach(l2, prune_infos)
1774 {
1775 PartitionedRelPruneInfo *prelinfo = lfirst(l2);
1776 int i;
1777
1778 prelinfo->rtindex += rtoffset;
1779 prelinfo->initial_pruning_steps =
1781 rtoffset, 1);
1782 prelinfo->exec_pruning_steps =
1784 rtoffset, 1);
1785
1786 for (i = 0; i < prelinfo->nparts; i++)
1787 {
1788 /*
1789 * Non-leaf partitions and partitions that do not have a
1790 * subplan are not included in this map as mentioned in
1791 * make_partitionedrel_pruneinfo().
1792 */
1793 if (prelinfo->leafpart_rti_map[i])
1794 {
1795 prelinfo->leafpart_rti_map[i] += rtoffset;
1796 if (prelinfo->initial_pruning_steps)
1798 prelinfo->leafpart_rti_map[i]);
1799 }
1800 }
1801 }
1802 }
1803
1804 glob->partPruneInfos = lappend(glob->partPruneInfos, pinfo);
1805
1806 return list_length(glob->partPruneInfos) - 1;
1807}
1808
1809/*
1810 * set_append_references
1811 * Do set_plan_references processing on an Append
1812 *
1813 * We try to strip out the Append entirely; if we can't, we have
1814 * to do the normal processing on it.
1815 */
1816static Plan *
1818 Append *aplan,
1819 int rtoffset)
1820{
1821 ListCell *l;
1822
1823 /*
1824 * Append, like Sort et al, doesn't actually evaluate its targetlist or
1825 * check quals. If it's got exactly one child plan, then it's not doing
1826 * anything useful at all, and we can strip it out.
1827 */
1828 Assert(aplan->plan.qual == NIL);
1829
1830 /* First, we gotta recurse on the children */
1831 foreach(l, aplan->appendplans)
1832 {
1833 lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1834 }
1835
1836 /*
1837 * See if it's safe to get rid of the Append entirely. For this to be
1838 * safe, there must be only one child plan and that child plan's parallel
1839 * awareness must match the Append's. The reason for the latter is that
1840 * if the Append is parallel aware and the child is not, then the calling
1841 * plan may execute the non-parallel aware child multiple times. (If you
1842 * change these rules, update create_append_path to match.)
1843 */
1844 if (list_length(aplan->appendplans) == 1)
1845 {
1846 Plan *p = (Plan *) linitial(aplan->appendplans);
1847
1848 if (p->parallel_aware == aplan->plan.parallel_aware)
1849 return clean_up_removed_plan_level((Plan *) aplan, p);
1850 }
1851
1852 /*
1853 * Otherwise, clean up the Append as needed. It's okay to do this after
1854 * recursing to the children, because set_dummy_tlist_references doesn't
1855 * look at those.
1856 */
1857 set_dummy_tlist_references((Plan *) aplan, rtoffset);
1858
1859 aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
1860
1861 /*
1862 * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1863 * Also update the RT indexes present in it to add the offset.
1864 */
1865 if (aplan->part_prune_index >= 0)
1866 aplan->part_prune_index =
1867 register_partpruneinfo(root, aplan->part_prune_index, rtoffset);
1868
1869 /* We don't need to recurse to lefttree or righttree ... */
1870 Assert(aplan->plan.lefttree == NULL);
1871 Assert(aplan->plan.righttree == NULL);
1872
1873 return (Plan *) aplan;
1874}
1875
1876/*
1877 * set_mergeappend_references
1878 * Do set_plan_references processing on a MergeAppend
1879 *
1880 * We try to strip out the MergeAppend entirely; if we can't, we have
1881 * to do the normal processing on it.
1882 */
1883static Plan *
1885 MergeAppend *mplan,
1886 int rtoffset)
1887{
1888 ListCell *l;
1889
1890 /*
1891 * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1892 * or check quals. If it's got exactly one child plan, then it's not
1893 * doing anything useful at all, and we can strip it out.
1894 */
1895 Assert(mplan->plan.qual == NIL);
1896
1897 /* First, we gotta recurse on the children */
1898 foreach(l, mplan->mergeplans)
1899 {
1900 lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1901 }
1902
1903 /*
1904 * See if it's safe to get rid of the MergeAppend entirely. For this to
1905 * be safe, there must be only one child plan and that child plan's
1906 * parallel awareness must match the MergeAppend's. The reason for the
1907 * latter is that if the MergeAppend is parallel aware and the child is
1908 * not, then the calling plan may execute the non-parallel aware child
1909 * multiple times. (If you change these rules, update
1910 * create_merge_append_path to match.)
1911 */
1912 if (list_length(mplan->mergeplans) == 1)
1913 {
1914 Plan *p = (Plan *) linitial(mplan->mergeplans);
1915
1916 if (p->parallel_aware == mplan->plan.parallel_aware)
1917 return clean_up_removed_plan_level((Plan *) mplan, p);
1918 }
1919
1920 /*
1921 * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1922 * after recursing to the children, because set_dummy_tlist_references
1923 * doesn't look at those.
1924 */
1925 set_dummy_tlist_references((Plan *) mplan, rtoffset);
1926
1927 mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
1928
1929 /*
1930 * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1931 * Also update the RT indexes present in it to add the offset.
1932 */
1933 if (mplan->part_prune_index >= 0)
1934 mplan->part_prune_index =
1935 register_partpruneinfo(root, mplan->part_prune_index, rtoffset);
1936
1937 /* We don't need to recurse to lefttree or righttree ... */
1938 Assert(mplan->plan.lefttree == NULL);
1939 Assert(mplan->plan.righttree == NULL);
1940
1941 return (Plan *) mplan;
1942}
1943
1944/*
1945 * set_hash_references
1946 * Do set_plan_references processing on a Hash node
1947 */
1948static void
1950{
1951 Hash *hplan = (Hash *) plan;
1952 Plan *outer_plan = plan->lefttree;
1953 indexed_tlist *outer_itlist;
1954
1955 /*
1956 * Hash's hashkeys are used when feeding tuples into the hashtable,
1957 * therefore have them reference Hash's outer plan (which itself is the
1958 * inner plan of the HashJoin).
1959 */
1960 outer_itlist = build_tlist_index(outer_plan->targetlist);
1961 hplan->hashkeys = (List *)
1963 (Node *) hplan->hashkeys,
1964 outer_itlist,
1965 OUTER_VAR,
1966 rtoffset,
1967 NRM_EQUAL,
1969
1970 /* Hash doesn't project */
1972
1973 /* Hash nodes don't have their own quals */
1974 Assert(plan->qual == NIL);
1975}
1976
1977/*
1978 * offset_relid_set
1979 * Apply rtoffset to the members of a Relids set.
1980 */
1981static Relids
1982offset_relid_set(Relids relids, int rtoffset)
1983{
1984 Relids result = NULL;
1985 int rtindex;
1986
1987 /* If there's no offset to apply, we needn't recompute the value */
1988 if (rtoffset == 0)
1989 return relids;
1990 rtindex = -1;
1991 while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
1992 result = bms_add_member(result, rtindex + rtoffset);
1993 return result;
1994}
1995
1996/*
1997 * copyVar
1998 * Copy a Var node.
1999 *
2000 * fix_scan_expr and friends do this enough times that it's worth having
2001 * a bespoke routine instead of using the generic copyObject() function.
2002 */
2003static inline Var *
2005{
2006 Var *newvar = (Var *) palloc(sizeof(Var));
2007
2008 *newvar = *var;
2009 return newvar;
2010}
2011
2012/*
2013 * fix_expr_common
2014 * Do generic set_plan_references processing on an expression node
2015 *
2016 * This is code that is common to all variants of expression-fixing.
2017 * We must look up operator opcode info for OpExpr and related nodes,
2018 * add OIDs from regclass Const nodes into root->glob->relationOids, and
2019 * add PlanInvalItems for user-defined functions into root->glob->invalItems.
2020 * We also fill in column index lists for GROUPING() expressions.
2021 *
2022 * We assume it's okay to update opcode info in-place. So this could possibly
2023 * scribble on the planner's input data structures, but it's OK.
2024 */
2025static void
2027{
2028 /* We assume callers won't call us on a NULL pointer */
2029 if (IsA(node, Aggref))
2030 {
2032 ((Aggref *) node)->aggfnoid);
2033 }
2034 else if (IsA(node, WindowFunc))
2035 {
2037 ((WindowFunc *) node)->winfnoid);
2038 }
2039 else if (IsA(node, FuncExpr))
2040 {
2042 ((FuncExpr *) node)->funcid);
2043 }
2044 else if (IsA(node, OpExpr))
2045 {
2046 set_opfuncid((OpExpr *) node);
2048 ((OpExpr *) node)->opfuncid);
2049 }
2050 else if (IsA(node, DistinctExpr))
2051 {
2052 set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2054 ((DistinctExpr *) node)->opfuncid);
2055 }
2056 else if (IsA(node, NullIfExpr))
2057 {
2058 set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2060 ((NullIfExpr *) node)->opfuncid);
2061 }
2062 else if (IsA(node, ScalarArrayOpExpr))
2063 {
2064 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2065
2066 set_sa_opfuncid(saop);
2067 record_plan_function_dependency(root, saop->opfuncid);
2068
2069 if (OidIsValid(saop->hashfuncid))
2070 record_plan_function_dependency(root, saop->hashfuncid);
2071
2072 if (OidIsValid(saop->negfuncid))
2073 record_plan_function_dependency(root, saop->negfuncid);
2074 }
2075 else if (IsA(node, Const))
2076 {
2077 Const *con = (Const *) node;
2078
2079 /* Check for regclass reference */
2080 if (ISREGCLASSCONST(con))
2081 root->glob->relationOids =
2082 lappend_oid(root->glob->relationOids,
2083 DatumGetObjectId(con->constvalue));
2084 }
2085 else if (IsA(node, GroupingFunc))
2086 {
2087 GroupingFunc *g = (GroupingFunc *) node;
2088 AttrNumber *grouping_map = root->grouping_map;
2089
2090 /* If there are no grouping sets, we don't need this. */
2091
2092 Assert(grouping_map || g->cols == NIL);
2093
2094 if (grouping_map)
2095 {
2096 ListCell *lc;
2097 List *cols = NIL;
2098
2099 foreach(lc, g->refs)
2100 {
2101 cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
2102 }
2103
2104 Assert(!g->cols || equal(cols, g->cols));
2105
2106 if (!g->cols)
2107 g->cols = cols;
2108 }
2109 }
2110}
2111
2112/*
2113 * fix_param_node
2114 * Do set_plan_references processing on a Param
2115 *
2116 * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
2117 * root->multiexpr_params; otherwise no change is needed.
2118 * Just for paranoia's sake, we make a copy of the node in either case.
2119 */
2120static Node *
2122{
2123 if (p->paramkind == PARAM_MULTIEXPR)
2124 {
2125 int subqueryid = p->paramid >> 16;
2126 int colno = p->paramid & 0xFFFF;
2127 List *params;
2128
2129 if (subqueryid <= 0 ||
2130 subqueryid > list_length(root->multiexpr_params))
2131 elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2132 params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
2133 if (colno <= 0 || colno > list_length(params))
2134 elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2135 return copyObject(list_nth(params, colno - 1));
2136 }
2137 return (Node *) copyObject(p);
2138}
2139
2140/*
2141 * fix_alternative_subplan
2142 * Do set_plan_references processing on an AlternativeSubPlan
2143 *
2144 * Choose one of the alternative implementations and return just that one,
2145 * discarding the rest of the AlternativeSubPlan structure.
2146 * Note: caller must still recurse into the result!
2147 *
2148 * We don't make any attempt to fix up cost estimates in the parent plan
2149 * node or higher-level nodes.
2150 */
2151static Node *
2153 double num_exec)
2154{
2155 SubPlan *bestplan = NULL;
2156 Cost bestcost = 0;
2157 ListCell *lc;
2158
2159 /*
2160 * Compute the estimated cost of each subplan assuming num_exec
2161 * executions, and keep the cheapest one. In event of exact equality of
2162 * estimates, we prefer the later plan; this is a bit arbitrary, but in
2163 * current usage it biases us to break ties against fast-start subplans.
2164 */
2165 Assert(asplan->subplans != NIL);
2166
2167 foreach(lc, asplan->subplans)
2168 {
2169 SubPlan *curplan = (SubPlan *) lfirst(lc);
2170 Cost curcost;
2171
2172 curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
2173 if (bestplan == NULL || curcost <= bestcost)
2174 {
2175 bestplan = curplan;
2176 bestcost = curcost;
2177 }
2178
2179 /* Also mark all subplans that are in AlternativeSubPlans */
2180 root->isAltSubplan[curplan->plan_id - 1] = true;
2181 }
2182
2183 /* Mark the subplan we selected */
2184 root->isUsedSubplan[bestplan->plan_id - 1] = true;
2185
2186 return (Node *) bestplan;
2187}
2188
2189/*
2190 * fix_scan_expr
2191 * Do set_plan_references processing on a scan-level expression
2192 *
2193 * This consists of incrementing all Vars' varnos by rtoffset,
2194 * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
2195 * replacing Aggref nodes that should be replaced by initplan output Params,
2196 * choosing the best implementation for AlternativeSubPlans,
2197 * looking up operator opcode info for OpExpr and related nodes,
2198 * and adding OIDs from regclass Const nodes into root->glob->relationOids.
2199 *
2200 * 'node': the expression to be modified
2201 * 'rtoffset': how much to increment varnos by
2202 * 'num_exec': estimated number of executions of expression
2203 *
2204 * The expression tree is either copied-and-modified, or modified in-place
2205 * if that seems safe.
2206 */
2207static Node *
2208fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
2209{
2210 fix_scan_expr_context context;
2211
2212 context.root = root;
2213 context.rtoffset = rtoffset;
2214 context.num_exec = num_exec;
2215
2216 if (rtoffset != 0 ||
2217 root->multiexpr_params != NIL ||
2218 root->glob->lastPHId != 0 ||
2219 root->minmax_aggs != NIL ||
2220 root->hasAlternativeSubPlans)
2221 {
2222 return fix_scan_expr_mutator(node, &context);
2223 }
2224 else
2225 {
2226 /*
2227 * If rtoffset == 0, we don't need to change any Vars, and if there
2228 * are no MULTIEXPR subqueries then we don't need to replace
2229 * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
2230 * we won't need to remove them, and if there are no minmax Aggrefs we
2231 * won't need to replace them, and if there are no AlternativeSubPlans
2232 * we won't need to remove them. Then it's OK to just scribble on the
2233 * input node tree instead of copying (since the only change, filling
2234 * in any unset opfuncid fields, is harmless). This saves just enough
2235 * cycles to be noticeable on trivial queries.
2236 */
2237 (void) fix_scan_expr_walker(node, &context);
2238 return node;
2239 }
2240}
2241
2242static Node *
2244{
2245 if (node == NULL)
2246 return NULL;
2247 if (IsA(node, Var))
2248 {
2249 Var *var = copyVar((Var *) node);
2250
2251 Assert(var->varlevelsup == 0);
2252
2253 /*
2254 * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
2255 * But an indexqual expression could contain INDEX_VAR Vars.
2256 */
2257 Assert(var->varno != INNER_VAR);
2258 Assert(var->varno != OUTER_VAR);
2259 Assert(var->varno != ROWID_VAR);
2260 if (!IS_SPECIAL_VARNO(var->varno))
2261 var->varno += context->rtoffset;
2262 if (var->varnosyn > 0)
2263 var->varnosyn += context->rtoffset;
2264 return (Node *) var;
2265 }
2266 if (IsA(node, Param))
2267 return fix_param_node(context->root, (Param *) node);
2268 if (IsA(node, Aggref))
2269 {
2270 Aggref *aggref = (Aggref *) node;
2271 Param *aggparam;
2272
2273 /* See if the Aggref should be replaced by a Param */
2274 aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2275 if (aggparam != NULL)
2276 {
2277 /* Make a copy of the Param for paranoia's sake */
2278 return (Node *) copyObject(aggparam);
2279 }
2280 /* If no match, just fall through to process it normally */
2281 }
2282 if (IsA(node, CurrentOfExpr))
2283 {
2284 CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
2285
2286 Assert(!IS_SPECIAL_VARNO(cexpr->cvarno));
2287 cexpr->cvarno += context->rtoffset;
2288 return (Node *) cexpr;
2289 }
2290 if (IsA(node, PlaceHolderVar))
2291 {
2292 /* At scan level, we should always just evaluate the contained expr */
2293 PlaceHolderVar *phv = (PlaceHolderVar *) node;
2294
2295 /* XXX can we assert something about phnullingrels? */
2296 return fix_scan_expr_mutator((Node *) phv->phexpr, context);
2297 }
2298 if (IsA(node, AlternativeSubPlan))
2300 (AlternativeSubPlan *) node,
2301 context->num_exec),
2302 context);
2303 fix_expr_common(context->root, node);
2304 return expression_tree_mutator(node, fix_scan_expr_mutator, context);
2305}
2306
2307static bool
2309{
2310 if (node == NULL)
2311 return false;
2312 Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
2313 Assert(!IsA(node, PlaceHolderVar));
2314 Assert(!IsA(node, AlternativeSubPlan));
2315 fix_expr_common(context->root, node);
2316 return expression_tree_walker(node, fix_scan_expr_walker, context);
2317}
2318
2319/*
2320 * set_join_references
2321 * Modify the target list and quals of a join node to reference its
2322 * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
2323 * attno values to the result domain number of either the corresponding
2324 * outer or inner join tuple item. Also perform opcode lookup for these
2325 * expressions, and add regclass OIDs to root->glob->relationOids.
2326 */
2327static void
2329{
2330 Plan *outer_plan = join->plan.lefttree;
2331 Plan *inner_plan = join->plan.righttree;
2332 indexed_tlist *outer_itlist;
2333 indexed_tlist *inner_itlist;
2334
2335 outer_itlist = build_tlist_index(outer_plan->targetlist);
2336 inner_itlist = build_tlist_index(inner_plan->targetlist);
2337
2338 /*
2339 * First process the joinquals (including merge or hash clauses). These
2340 * are logically below the join so they can always use all values
2341 * available from the input tlists. It's okay to also handle
2342 * NestLoopParams now, because those couldn't refer to nullable
2343 * subexpressions.
2344 */
2345 join->joinqual = fix_join_expr(root,
2346 join->joinqual,
2347 outer_itlist,
2348 inner_itlist,
2349 (Index) 0,
2350 rtoffset,
2351 NRM_EQUAL,
2352 NUM_EXEC_QUAL((Plan *) join));
2353
2354 /* Now do join-type-specific stuff */
2355 if (IsA(join, NestLoop))
2356 {
2357 NestLoop *nl = (NestLoop *) join;
2358 ListCell *lc;
2359
2360 foreach(lc, nl->nestParams)
2361 {
2362 NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
2363
2364 /*
2365 * Because we don't reparameterize parameterized paths to match
2366 * the outer-join level at which they are used, Vars seen in the
2367 * NestLoopParam expression may have nullingrels that are just a
2368 * subset of those in the Vars actually available from the outer
2369 * side. (Lateral references can also cause this, as explained in
2370 * the comments for identify_current_nestloop_params.) Not
2371 * checking this exactly is a bit grotty, but the work needed to
2372 * make things match up perfectly seems well out of proportion to
2373 * the value.
2374 */
2375 nlp->paramval = (Var *) fix_upper_expr(root,
2376 (Node *) nlp->paramval,
2377 outer_itlist,
2378 OUTER_VAR,
2379 rtoffset,
2380 NRM_SUBSET,
2381 NUM_EXEC_TLIST(outer_plan));
2382 /* Check we replaced any PlaceHolderVar with simple Var */
2383 if (!(IsA(nlp->paramval, Var) &&
2384 nlp->paramval->varno == OUTER_VAR))
2385 elog(ERROR, "NestLoopParam was not reduced to a simple Var");
2386 }
2387 }
2388 else if (IsA(join, MergeJoin))
2389 {
2390 MergeJoin *mj = (MergeJoin *) join;
2391
2393 mj->mergeclauses,
2394 outer_itlist,
2395 inner_itlist,
2396 (Index) 0,
2397 rtoffset,
2398 NRM_EQUAL,
2399 NUM_EXEC_QUAL((Plan *) join));
2400 }
2401 else if (IsA(join, HashJoin))
2402 {
2403 HashJoin *hj = (HashJoin *) join;
2404
2406 hj->hashclauses,
2407 outer_itlist,
2408 inner_itlist,
2409 (Index) 0,
2410 rtoffset,
2411 NRM_EQUAL,
2412 NUM_EXEC_QUAL((Plan *) join));
2413
2414 /*
2415 * HashJoin's hashkeys are used to look for matching tuples from its
2416 * outer plan (not the Hash node!) in the hashtable.
2417 */
2418 hj->hashkeys = (List *) fix_upper_expr(root,
2419 (Node *) hj->hashkeys,
2420 outer_itlist,
2421 OUTER_VAR,
2422 rtoffset,
2423 NRM_EQUAL,
2424 NUM_EXEC_QUAL((Plan *) join));
2425 }
2426
2427 /*
2428 * Now we need to fix up the targetlist and qpqual, which are logically
2429 * above the join. This means that, if it's not an inner join, any Vars
2430 * and PHVs appearing here should have nullingrels that include the
2431 * effects of the outer join, ie they will have nullingrels equal to the
2432 * input Vars' nullingrels plus the bit added by the outer join. We don't
2433 * currently have enough info available here to identify what that should
2434 * be, so we just tell fix_join_expr to accept superset nullingrels
2435 * matches instead of exact ones.
2436 */
2437 join->plan.targetlist = fix_join_expr(root,
2438 join->plan.targetlist,
2439 outer_itlist,
2440 inner_itlist,
2441 (Index) 0,
2442 rtoffset,
2444 NUM_EXEC_TLIST((Plan *) join));
2445 join->plan.qual = fix_join_expr(root,
2446 join->plan.qual,
2447 outer_itlist,
2448 inner_itlist,
2449 (Index) 0,
2450 rtoffset,
2452 NUM_EXEC_QUAL((Plan *) join));
2453
2454 pfree(outer_itlist);
2455 pfree(inner_itlist);
2456}
2457
2458/*
2459 * set_upper_references
2460 * Update the targetlist and quals of an upper-level plan node
2461 * to refer to the tuples returned by its lefttree subplan.
2462 * Also perform opcode lookup for these expressions, and
2463 * add regclass OIDs to root->glob->relationOids.
2464 *
2465 * This is used for single-input plan types like Agg, Group, Result.
2466 *
2467 * In most cases, we have to match up individual Vars in the tlist and
2468 * qual expressions with elements of the subplan's tlist (which was
2469 * generated by flattening these selfsame expressions, so it should have all
2470 * the required variables). There is an important exception, however:
2471 * depending on where we are in the plan tree, sort/group columns may have
2472 * been pushed into the subplan tlist unflattened. If these values are also
2473 * needed in the output then we want to reference the subplan tlist element
2474 * rather than recomputing the expression.
2475 */
2476static void
2478{
2479 Plan *subplan = plan->lefttree;
2480 indexed_tlist *subplan_itlist;
2481 List *output_targetlist;
2482 ListCell *l;
2483
2484 subplan_itlist = build_tlist_index(subplan->targetlist);
2485
2486 /*
2487 * If it's a grouping node with grouping sets, any Vars and PHVs appearing
2488 * in the targetlist and quals should have nullingrels that include the
2489 * effects of the grouping step, ie they will have nullingrels equal to
2490 * the input Vars/PHVs' nullingrels plus the RT index of the grouping
2491 * step. In order to perform exact nullingrels matches, we remove the RT
2492 * index of the grouping step first.
2493 */
2494 if (IsA(plan, Agg) &&
2495 root->group_rtindex > 0 &&
2496 ((Agg *) plan)->groupingSets)
2497 {
2498 plan->targetlist = (List *)
2499 remove_nulling_relids((Node *) plan->targetlist,
2500 bms_make_singleton(root->group_rtindex),
2501 NULL);
2502 plan->qual = (List *)
2504 bms_make_singleton(root->group_rtindex),
2505 NULL);
2506 }
2507
2508 output_targetlist = NIL;
2509 foreach(l, plan->targetlist)
2510 {
2511 TargetEntry *tle = (TargetEntry *) lfirst(l);
2512 Node *newexpr;
2513
2514 /* If it's a sort/group item, first try to match by sortref */
2515 if (tle->ressortgroupref != 0)
2516 {
2517 newexpr = (Node *)
2519 tle->ressortgroupref,
2520 subplan_itlist,
2521 OUTER_VAR);
2522 if (!newexpr)
2523 newexpr = fix_upper_expr(root,
2524 (Node *) tle->expr,
2525 subplan_itlist,
2526 OUTER_VAR,
2527 rtoffset,
2528 NRM_EQUAL,
2530 }
2531 else
2532 newexpr = fix_upper_expr(root,
2533 (Node *) tle->expr,
2534 subplan_itlist,
2535 OUTER_VAR,
2536 rtoffset,
2537 NRM_EQUAL,
2539 tle = flatCopyTargetEntry(tle);
2540 tle->expr = (Expr *) newexpr;
2541 output_targetlist = lappend(output_targetlist, tle);
2542 }
2543 plan->targetlist = output_targetlist;
2544
2545 plan->qual = (List *)
2547 (Node *) plan->qual,
2548 subplan_itlist,
2549 OUTER_VAR,
2550 rtoffset,
2551 NRM_EQUAL,
2553
2554 pfree(subplan_itlist);
2555}
2556
2557/*
2558 * set_param_references
2559 * Initialize the initParam list in Gather or Gather merge node such that
2560 * it contains reference of all the params that needs to be evaluated
2561 * before execution of the node. It contains the initplan params that are
2562 * being passed to the plan nodes below it.
2563 */
2564static void
2566{
2568
2569 if (plan->lefttree->extParam)
2570 {
2571 PlannerInfo *proot;
2572 Bitmapset *initSetParam = NULL;
2573 ListCell *l;
2574
2575 for (proot = root; proot != NULL; proot = proot->parent_root)
2576 {
2577 foreach(l, proot->init_plans)
2578 {
2579 SubPlan *initsubplan = (SubPlan *) lfirst(l);
2580 ListCell *l2;
2581
2582 foreach(l2, initsubplan->setParam)
2583 {
2584 initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2585 }
2586 }
2587 }
2588
2589 /*
2590 * Remember the list of all external initplan params that are used by
2591 * the children of Gather or Gather merge node.
2592 */
2593 if (IsA(plan, Gather))
2594 ((Gather *) plan)->initParam =
2595 bms_intersect(plan->lefttree->extParam, initSetParam);
2596 else
2597 ((GatherMerge *) plan)->initParam =
2598 bms_intersect(plan->lefttree->extParam, initSetParam);
2599 }
2600}
2601
2602/*
2603 * Recursively scan an expression tree and convert Aggrefs to the proper
2604 * intermediate form for combining aggregates. This means (1) replacing each
2605 * one's argument list with a single argument that is the original Aggref
2606 * modified to show partial aggregation and (2) changing the upper Aggref to
2607 * show combining aggregation.
2608 *
2609 * After this step, set_upper_references will replace the partial Aggrefs
2610 * with Vars referencing the lower Agg plan node's outputs, so that the final
2611 * form seen by the executor is a combining Aggref with a Var as input.
2612 *
2613 * It's rather messy to postpone this step until setrefs.c; ideally it'd be
2614 * done in createplan.c. The difficulty is that once we modify the Aggref
2615 * expressions, they will no longer be equal() to their original form and
2616 * so cross-plan-node-level matches will fail. So this has to happen after
2617 * the plan node above the Agg has resolved its subplan references.
2618 */
2619static Node *
2620convert_combining_aggrefs(Node *node, void *context)
2621{
2622 if (node == NULL)
2623 return NULL;
2624 if (IsA(node, Aggref))
2625 {
2626 Aggref *orig_agg = (Aggref *) node;
2627 Aggref *child_agg;
2628 Aggref *parent_agg;
2629
2630 /* Assert we've not chosen to partial-ize any unsupported cases */
2631 Assert(orig_agg->aggorder == NIL);
2632 Assert(orig_agg->aggdistinct == NIL);
2633
2634 /*
2635 * Since aggregate calls can't be nested, we needn't recurse into the
2636 * arguments. But for safety, flat-copy the Aggref node itself rather
2637 * than modifying it in-place.
2638 */
2639 child_agg = makeNode(Aggref);
2640 memcpy(child_agg, orig_agg, sizeof(Aggref));
2641
2642 /*
2643 * For the parent Aggref, we want to copy all the fields of the
2644 * original aggregate *except* the args list, which we'll replace
2645 * below, and the aggfilter expression, which should be applied only
2646 * by the child not the parent. Rather than explicitly knowing about
2647 * all the other fields here, we can momentarily modify child_agg to
2648 * provide a suitable source for copyObject.
2649 */
2650 child_agg->args = NIL;
2651 child_agg->aggfilter = NULL;
2652 parent_agg = copyObject(child_agg);
2653 child_agg->args = orig_agg->args;
2654 child_agg->aggfilter = orig_agg->aggfilter;
2655
2656 /*
2657 * Now, set up child_agg to represent the first phase of partial
2658 * aggregation. For now, assume serialization is required.
2659 */
2661
2662 /*
2663 * And set up parent_agg to represent the second phase.
2664 */
2665 parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2666 1, NULL, false));
2668
2669 return (Node *) parent_agg;
2670 }
2672}
2673
2674/*
2675 * set_dummy_tlist_references
2676 * Replace the targetlist of an upper-level plan node with a simple
2677 * list of OUTER_VAR references to its child.
2678 *
2679 * This is used for plan types like Sort and Append that don't evaluate
2680 * their targetlists. Although the executor doesn't care at all what's in
2681 * the tlist, EXPLAIN needs it to be realistic.
2682 *
2683 * Note: we could almost use set_upper_references() here, but it fails for
2684 * Append for lack of a lefttree subplan. Single-purpose code is faster
2685 * anyway.
2686 */
2687static void
2689{
2690 List *output_targetlist;
2691 ListCell *l;
2692
2693 output_targetlist = NIL;
2694 foreach(l, plan->targetlist)
2695 {
2696 TargetEntry *tle = (TargetEntry *) lfirst(l);
2697 Var *oldvar = (Var *) tle->expr;
2698 Var *newvar;
2699
2700 /*
2701 * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2702 * as Consts, not Vars referencing Consts. Here, there's no speed
2703 * advantage to be had, but it makes EXPLAIN output look cleaner, and
2704 * again it avoids confusing the executor.
2705 */
2706 if (IsA(oldvar, Const))
2707 {
2708 /* just reuse the existing TLE node */
2709 output_targetlist = lappend(output_targetlist, tle);
2710 continue;
2711 }
2712
2713 newvar = makeVar(OUTER_VAR,
2714 tle->resno,
2715 exprType((Node *) oldvar),
2716 exprTypmod((Node *) oldvar),
2717 exprCollation((Node *) oldvar),
2718 0);
2719 if (IsA(oldvar, Var) &&
2720 oldvar->varnosyn > 0)
2721 {
2722 newvar->varnosyn = oldvar->varnosyn + rtoffset;
2723 newvar->varattnosyn = oldvar->varattnosyn;
2724 }
2725 else
2726 {
2727 newvar->varnosyn = 0; /* wasn't ever a plain Var */
2728 newvar->varattnosyn = 0;
2729 }
2730
2731 tle = flatCopyTargetEntry(tle);
2732 tle->expr = (Expr *) newvar;
2733 output_targetlist = lappend(output_targetlist, tle);
2734 }
2735 plan->targetlist = output_targetlist;
2736
2737 /* We don't touch plan->qual here */
2738}
2739
2740
2741/*
2742 * build_tlist_index --- build an index data structure for a child tlist
2743 *
2744 * In most cases, subplan tlists will be "flat" tlists with only Vars,
2745 * so we try to optimize that case by extracting information about Vars
2746 * in advance. Matching a parent tlist to a child is still an O(N^2)
2747 * operation, but at least with a much smaller constant factor than plain
2748 * tlist_member() searches.
2749 *
2750 * The result of this function is an indexed_tlist struct to pass to
2751 * search_indexed_tlist_for_var() and siblings.
2752 * When done, the indexed_tlist may be freed with a single pfree().
2753 */
2754static indexed_tlist *
2756{
2757 indexed_tlist *itlist;
2758 tlist_vinfo *vinfo;
2759 ListCell *l;
2760
2761 /* Create data structure with enough slots for all tlist entries */
2762 itlist = (indexed_tlist *)
2763 palloc(offsetof(indexed_tlist, vars) +
2764 list_length(tlist) * sizeof(tlist_vinfo));
2765
2766 itlist->tlist = tlist;
2767 itlist->has_ph_vars = false;
2768 itlist->has_non_vars = false;
2769
2770 /* Find the Vars and fill in the index array */
2771 vinfo = itlist->vars;
2772 foreach(l, tlist)
2773 {
2774 TargetEntry *tle = (TargetEntry *) lfirst(l);
2775
2776 if (tle->expr && IsA(tle->expr, Var))
2777 {
2778 Var *var = (Var *) tle->expr;
2779
2780 vinfo->varno = var->varno;
2781 vinfo->varattno = var->varattno;
2782 vinfo->resno = tle->resno;
2783 vinfo->varnullingrels = var->varnullingrels;
2784 vinfo++;
2785 }
2786 else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2787 itlist->has_ph_vars = true;
2788 else
2789 itlist->has_non_vars = true;
2790 }
2791
2792 itlist->num_vars = (vinfo - itlist->vars);
2793
2794 return itlist;
2795}
2796
2797/*
2798 * build_tlist_index_other_vars --- build a restricted tlist index
2799 *
2800 * This is like build_tlist_index, but we only index tlist entries that
2801 * are Vars belonging to some rel other than the one specified. We will set
2802 * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2803 * (so nothing other than Vars and PlaceHolderVars can be matched).
2804 */
2805static indexed_tlist *
2806build_tlist_index_other_vars(List *tlist, int ignore_rel)
2807{
2808 indexed_tlist *itlist;
2809 tlist_vinfo *vinfo;
2810 ListCell *l;
2811
2812 /* Create data structure with enough slots for all tlist entries */
2813 itlist = (indexed_tlist *)
2814 palloc(offsetof(indexed_tlist, vars) +
2815 list_length(tlist) * sizeof(tlist_vinfo));
2816
2817 itlist->tlist = tlist;
2818 itlist->has_ph_vars = false;
2819 itlist->has_non_vars = false;
2820
2821 /* Find the desired Vars and fill in the index array */
2822 vinfo = itlist->vars;
2823 foreach(l, tlist)
2824 {
2825 TargetEntry *tle = (TargetEntry *) lfirst(l);
2826
2827 if (tle->expr && IsA(tle->expr, Var))
2828 {
2829 Var *var = (Var *) tle->expr;
2830
2831 if (var->varno != ignore_rel)
2832 {
2833 vinfo->varno = var->varno;
2834 vinfo->varattno = var->varattno;
2835 vinfo->resno = tle->resno;
2836 vinfo->varnullingrels = var->varnullingrels;
2837 vinfo++;
2838 }
2839 }
2840 else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2841 itlist->has_ph_vars = true;
2842 }
2843
2844 itlist->num_vars = (vinfo - itlist->vars);
2845
2846 return itlist;
2847}
2848
2849/*
2850 * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2851 *
2852 * If a match is found, return a copy of the given Var with suitably
2853 * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2854 * Also ensure that varnosyn is incremented by rtoffset.
2855 * If no match, return NULL.
2856 *
2857 * We cross-check the varnullingrels of the subplan output Var based on
2858 * nrm_match. Most call sites should pass NRM_EQUAL indicating we expect
2859 * an exact match. However, there are places where we haven't cleaned
2860 * things up completely, and we have to settle for allowing subset or
2861 * superset matches.
2862 */
2863static Var *
2865 int newvarno, int rtoffset,
2866 NullingRelsMatch nrm_match)
2867{
2868 int varno = var->varno;
2869 AttrNumber varattno = var->varattno;
2870 tlist_vinfo *vinfo;
2871 int i;
2872
2873 vinfo = itlist->vars;
2874 i = itlist->num_vars;
2875 while (i-- > 0)
2876 {
2877 if (vinfo->varno == varno && vinfo->varattno == varattno)
2878 {
2879 /* Found a match */
2880 Var *newvar = copyVar(var);
2881
2882 /*
2883 * Verify that we kept all the nullingrels machinations straight.
2884 *
2885 * XXX we skip the check for system columns and whole-row Vars.
2886 * That's because such Vars might be row identity Vars, which are
2887 * generated without any varnullingrels. It'd be hard to do
2888 * otherwise, since they're normally made very early in planning,
2889 * when we haven't looked at the jointree yet and don't know which
2890 * joins might null such Vars. Doesn't seem worth the expense to
2891 * make them fully valid. (While it's slightly annoying that we
2892 * thereby lose checking for user-written references to such
2893 * columns, it seems unlikely that a bug in nullingrels logic
2894 * would affect only system columns.)
2895 */
2896 if (!(varattno <= 0 ||
2897 (nrm_match == NRM_SUBSET ?
2898 bms_is_subset(var->varnullingrels, vinfo->varnullingrels) :
2899 nrm_match == NRM_SUPERSET ?
2900 bms_is_subset(vinfo->varnullingrels, var->varnullingrels) :
2901 bms_equal(vinfo->varnullingrels, var->varnullingrels))))
2902 elog(ERROR, "wrong varnullingrels %s (expected %s) for Var %d/%d",
2903 bmsToString(var->varnullingrels),
2905 varno, varattno);
2906
2907 newvar->varno = newvarno;
2908 newvar->varattno = vinfo->resno;
2909 if (newvar->varnosyn > 0)
2910 newvar->varnosyn += rtoffset;
2911 return newvar;
2912 }
2913 vinfo++;
2914 }
2915 return NULL; /* no match */
2916}
2917
2918/*
2919 * search_indexed_tlist_for_phv --- find a PlaceHolderVar in an indexed tlist
2920 *
2921 * If a match is found, return a Var constructed to reference the tlist item.
2922 * If no match, return NULL.
2923 *
2924 * Cross-check phnullingrels as in search_indexed_tlist_for_var.
2925 *
2926 * NOTE: it is a waste of time to call this unless itlist->has_ph_vars.
2927 */
2928static Var *
2930 indexed_tlist *itlist, int newvarno,
2931 NullingRelsMatch nrm_match)
2932{
2933 ListCell *lc;
2934
2935 foreach(lc, itlist->tlist)
2936 {
2937 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2938
2939 if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2940 {
2941 PlaceHolderVar *subphv = (PlaceHolderVar *) tle->expr;
2942 Var *newvar;
2943
2944 /*
2945 * Analogously to search_indexed_tlist_for_var, we match on phid
2946 * only. We don't use equal(), partially for speed but mostly
2947 * because phnullingrels might not be exactly equal.
2948 */
2949 if (phv->phid != subphv->phid)
2950 continue;
2951
2952 /* Verify that we kept all the nullingrels machinations straight */
2953 if (!(nrm_match == NRM_SUBSET ?
2955 nrm_match == NRM_SUPERSET ?
2957 bms_equal(subphv->phnullingrels, phv->phnullingrels)))
2958 elog(ERROR, "wrong phnullingrels %s (expected %s) for PlaceHolderVar %d",
2960 bmsToString(subphv->phnullingrels),
2961 phv->phid);
2962
2963 /* Found a matching subplan output expression */
2964 newvar = makeVarFromTargetEntry(newvarno, tle);
2965 newvar->varnosyn = 0; /* wasn't ever a plain Var */
2966 newvar->varattnosyn = 0;
2967 return newvar;
2968 }
2969 }
2970 return NULL; /* no match */
2971}
2972
2973/*
2974 * search_indexed_tlist_for_non_var --- find a non-Var/PHV in an indexed tlist
2975 *
2976 * If a match is found, return a Var constructed to reference the tlist item.
2977 * If no match, return NULL.
2978 *
2979 * NOTE: it is a waste of time to call this unless itlist->has_non_vars.
2980 */
2981static Var *
2983 indexed_tlist *itlist, int newvarno)
2984{
2985 TargetEntry *tle;
2986
2987 /*
2988 * If it's a simple Const, replacing it with a Var is silly, even if there
2989 * happens to be an identical Const below; a Var is more expensive to
2990 * execute than a Const. What's more, replacing it could confuse some
2991 * places in the executor that expect to see simple Consts for, eg,
2992 * dropped columns.
2993 */
2994 if (IsA(node, Const))
2995 return NULL;
2996
2997 tle = tlist_member(node, itlist->tlist);
2998 if (tle)
2999 {
3000 /* Found a matching subplan output expression */
3001 Var *newvar;
3002
3003 newvar = makeVarFromTargetEntry(newvarno, tle);
3004 newvar->varnosyn = 0; /* wasn't ever a plain Var */
3005 newvar->varattnosyn = 0;
3006 return newvar;
3007 }
3008 return NULL; /* no match */
3009}
3010
3011/*
3012 * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
3013 *
3014 * If a match is found, return a Var constructed to reference the tlist item.
3015 * If no match, return NULL.
3016 *
3017 * This is needed to ensure that we select the right subplan TLE in cases
3018 * where there are multiple textually-equal()-but-volatile sort expressions.
3019 * And it's also faster than search_indexed_tlist_for_non_var.
3020 */
3021static Var *
3023 Index sortgroupref,
3024 indexed_tlist *itlist,
3025 int newvarno)
3026{
3027 ListCell *lc;
3028
3029 foreach(lc, itlist->tlist)
3030 {
3031 TargetEntry *tle = (TargetEntry *) lfirst(lc);
3032
3033 /*
3034 * Usually the equal() check is redundant, but in setop plans it may
3035 * not be, since prepunion.c assigns ressortgroupref equal to the
3036 * column resno without regard to whether that matches the topmost
3037 * level's sortgrouprefs and without regard to whether any implicit
3038 * coercions are added in the setop tree. We might have to clean that
3039 * up someday; but for now, just ignore any false matches.
3040 */
3041 if (tle->ressortgroupref == sortgroupref &&
3042 equal(node, tle->expr))
3043 {
3044 /* Found a matching subplan output expression */
3045 Var *newvar;
3046
3047 newvar = makeVarFromTargetEntry(newvarno, tle);
3048 newvar->varnosyn = 0; /* wasn't ever a plain Var */
3049 newvar->varattnosyn = 0;
3050 return newvar;
3051 }
3052 }
3053 return NULL; /* no match */
3054}
3055
3056/*
3057 * fix_join_expr
3058 * Create a new set of targetlist entries or join qual clauses by
3059 * changing the varno/varattno values of variables in the clauses
3060 * to reference target list values from the outer and inner join
3061 * relation target lists. Also perform opcode lookup and add
3062 * regclass OIDs to root->glob->relationOids.
3063 *
3064 * This is used in four different scenarios:
3065 * 1) a normal join clause, where all the Vars in the clause *must* be
3066 * replaced by OUTER_VAR or INNER_VAR references. In this case
3067 * acceptable_rel should be zero so that any failure to match a Var will be
3068 * reported as an error.
3069 * 2) RETURNING clauses, which may contain both Vars of the target relation
3070 * and Vars of other relations. In this case we want to replace the
3071 * other-relation Vars by OUTER_VAR references, while leaving target Vars
3072 * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
3073 * target relation should be passed.
3074 * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
3075 * to be replaced with INNER_VAR references, while leaving target Vars (the
3076 * to-be-updated relation) alone. Correspondingly inner_itlist is to be
3077 * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
3078 * relation.
3079 * 4) MERGE. In this case, references to the source relation are to be
3080 * replaced with INNER_VAR references, leaving Vars of the target
3081 * relation (the to-be-modified relation) alone. So inner_itlist is to be
3082 * the source relation elements, outer_itlist = NULL and acceptable_rel
3083 * the target relation.
3084 *
3085 * 'clauses' is the targetlist or list of join clauses
3086 * 'outer_itlist' is the indexed target list of the outer join relation,
3087 * or NULL
3088 * 'inner_itlist' is the indexed target list of the inner join relation,
3089 * or NULL
3090 * 'acceptable_rel' is either zero or the rangetable index of a relation
3091 * whose Vars may appear in the clause without provoking an error
3092 * 'rtoffset': how much to increment varnos by
3093 * 'nrm_match': as for search_indexed_tlist_for_var()
3094 * 'num_exec': estimated number of executions of expression
3095 *
3096 * Returns the new expression tree. The original clause structure is
3097 * not modified.
3098 */
3099static List *
3101 List *clauses,
3102 indexed_tlist *outer_itlist,
3103 indexed_tlist *inner_itlist,
3104 Index acceptable_rel,
3105 int rtoffset,
3106 NullingRelsMatch nrm_match,
3107 double num_exec)
3108{
3109 fix_join_expr_context context;
3110
3111 context.root = root;
3112 context.outer_itlist = outer_itlist;
3113 context.inner_itlist = inner_itlist;
3114 context.acceptable_rel = acceptable_rel;
3115 context.rtoffset = rtoffset;
3116 context.nrm_match = nrm_match;
3117 context.num_exec = num_exec;
3118 return (List *) fix_join_expr_mutator((Node *) clauses, &context);
3119}
3120
3121static Node *
3123{
3124 Var *newvar;
3125
3126 if (node == NULL)
3127 return NULL;
3128 if (IsA(node, Var))
3129 {
3130 Var *var = (Var *) node;
3131
3132 /*
3133 * Verify that Vars with non-default varreturningtype only appear in
3134 * the RETURNING list, and refer to the target relation.
3135 */
3137 {
3138 if (context->inner_itlist != NULL ||
3139 context->outer_itlist == NULL ||
3140 context->acceptable_rel == 0)
3141 elog(ERROR, "variable returning old/new found outside RETURNING list");
3142 if (var->varno != context->acceptable_rel)
3143 elog(ERROR, "wrong varno %d (expected %d) for variable returning old/new",
3144 var->varno, context->acceptable_rel);
3145 }
3146
3147 /* Look for the var in the input tlists, first in the outer */
3148 if (context->outer_itlist)
3149 {
3150 newvar = search_indexed_tlist_for_var(var,
3151 context->outer_itlist,
3152 OUTER_VAR,
3153 context->rtoffset,
3154 context->nrm_match);
3155 if (newvar)
3156 return (Node *) newvar;
3157 }
3158
3159 /* then in the inner. */
3160 if (context->inner_itlist)
3161 {
3162 newvar = search_indexed_tlist_for_var(var,
3163 context->inner_itlist,
3164 INNER_VAR,
3165 context->rtoffset,
3166 context->nrm_match);
3167 if (newvar)
3168 return (Node *) newvar;
3169 }
3170
3171 /* If it's for acceptable_rel, adjust and return it */
3172 if (var->varno == context->acceptable_rel)
3173 {
3174 var = copyVar(var);
3175 var->varno += context->rtoffset;
3176 if (var->varnosyn > 0)
3177 var->varnosyn += context->rtoffset;
3178 return (Node *) var;
3179 }
3180
3181 /* No referent found for Var */
3182 elog(ERROR, "variable not found in subplan target lists");
3183 }
3184 if (IsA(node, PlaceHolderVar))
3185 {
3186 PlaceHolderVar *phv = (PlaceHolderVar *) node;
3187
3188 /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3189 if (context->outer_itlist && context->outer_itlist->has_ph_vars)
3190 {
3191 newvar = search_indexed_tlist_for_phv(phv,
3192 context->outer_itlist,
3193 OUTER_VAR,
3194 context->nrm_match);
3195 if (newvar)
3196 return (Node *) newvar;
3197 }
3198 if (context->inner_itlist && context->inner_itlist->has_ph_vars)
3199 {
3200 newvar = search_indexed_tlist_for_phv(phv,
3201 context->inner_itlist,
3202 INNER_VAR,
3203 context->nrm_match);
3204 if (newvar)
3205 return (Node *) newvar;
3206 }
3207
3208 /* If not supplied by input plans, evaluate the contained expr */
3209 /* XXX can we assert something about phnullingrels? */
3210 return fix_join_expr_mutator((Node *) phv->phexpr, context);
3211 }
3212 /* Try matching more complex expressions too, if tlists have any */
3213 if (context->outer_itlist && context->outer_itlist->has_non_vars)
3214 {
3215 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3216 context->outer_itlist,
3217 OUTER_VAR);
3218 if (newvar)
3219 return (Node *) newvar;
3220 }
3221 if (context->inner_itlist && context->inner_itlist->has_non_vars)
3222 {
3223 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3224 context->inner_itlist,
3225 INNER_VAR);
3226 if (newvar)
3227 return (Node *) newvar;
3228 }
3229 /* Special cases (apply only AFTER failing to match to lower tlist) */
3230 if (IsA(node, Param))
3231 return fix_param_node(context->root, (Param *) node);
3232 if (IsA(node, AlternativeSubPlan))
3234 (AlternativeSubPlan *) node,
3235 context->num_exec),
3236 context);
3237 fix_expr_common(context->root, node);
3238 return expression_tree_mutator(node, fix_join_expr_mutator, context);
3239}
3240
3241/*
3242 * fix_upper_expr
3243 * Modifies an expression tree so that all Var nodes reference outputs
3244 * of a subplan. Also looks for Aggref nodes that should be replaced
3245 * by initplan output Params. Also performs opcode lookup, and adds
3246 * regclass OIDs to root->glob->relationOids.
3247 *
3248 * This is used to fix up target and qual expressions of non-join upper-level
3249 * plan nodes, as well as index-only scan nodes.
3250 *
3251 * An error is raised if no matching var can be found in the subplan tlist
3252 * --- so this routine should only be applied to nodes whose subplans'
3253 * targetlists were generated by flattening the expressions used in the
3254 * parent node.
3255 *
3256 * If itlist->has_non_vars is true, then we try to match whole subexpressions
3257 * against elements of the subplan tlist, so that we can avoid recomputing
3258 * expressions that were already computed by the subplan. (This is relatively
3259 * expensive, so we don't want to try it in the common case where the
3260 * subplan tlist is just a flattened list of Vars.)
3261 *
3262 * 'node': the tree to be fixed (a target item or qual)
3263 * 'subplan_itlist': indexed target list for subplan (or index)
3264 * 'newvarno': varno to use for Vars referencing tlist elements
3265 * 'rtoffset': how much to increment varnos by
3266 * 'nrm_match': as for search_indexed_tlist_for_var()
3267 * 'num_exec': estimated number of executions of expression
3268 *
3269 * The resulting tree is a copy of the original in which all Var nodes have
3270 * varno = newvarno, varattno = resno of corresponding targetlist element.
3271 * The original tree is not modified.
3272 */
3273static Node *
3275 Node *node,
3276 indexed_tlist *subplan_itlist,
3277 int newvarno,
3278 int rtoffset,
3279 NullingRelsMatch nrm_match,
3280 double num_exec)
3281{
3282 fix_upper_expr_context context;
3283
3284 context.root = root;
3285 context.subplan_itlist = subplan_itlist;
3286 context.newvarno = newvarno;
3287 context.rtoffset = rtoffset;
3288 context.nrm_match = nrm_match;
3289 context.num_exec = num_exec;
3290 return fix_upper_expr_mutator(node, &context);
3291}
3292
3293static Node *
3295{
3296 Var *newvar;
3297
3298 if (node == NULL)
3299 return NULL;
3300 if (IsA(node, Var))
3301 {
3302 Var *var = (Var *) node;
3303
3304 newvar = search_indexed_tlist_for_var(var,
3305 context->subplan_itlist,
3306 context->newvarno,
3307 context->rtoffset,
3308 context->nrm_match);
3309 if (!newvar)
3310 elog(ERROR, "variable not found in subplan target list");
3311 return (Node *) newvar;
3312 }
3313 if (IsA(node, PlaceHolderVar))
3314 {
3315 PlaceHolderVar *phv = (PlaceHolderVar *) node;
3316
3317 /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3318 if (context->subplan_itlist->has_ph_vars)
3319 {
3320 newvar = search_indexed_tlist_for_phv(phv,
3321 context->subplan_itlist,
3322 context->newvarno,
3323 context->nrm_match);
3324 if (newvar)
3325 return (Node *) newvar;
3326 }
3327 /* If not supplied by input plan, evaluate the contained expr */
3328 /* XXX can we assert something about phnullingrels? */
3329 return fix_upper_expr_mutator((Node *) phv->phexpr, context);
3330 }
3331 /* Try matching more complex expressions too, if tlist has any */
3332 if (context->subplan_itlist->has_non_vars)
3333 {
3334 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3335 context->subplan_itlist,
3336 context->newvarno);
3337 if (newvar)
3338 return (Node *) newvar;
3339 }
3340 /* Special cases (apply only AFTER failing to match to lower tlist) */
3341 if (IsA(node, Param))
3342 return fix_param_node(context->root, (Param *) node);
3343 if (IsA(node, Aggref))
3344 {
3345 Aggref *aggref = (Aggref *) node;
3346 Param *aggparam;
3347
3348 /* See if the Aggref should be replaced by a Param */
3349 aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3350 if (aggparam != NULL)
3351 {
3352 /* Make a copy of the Param for paranoia's sake */
3353 return (Node *) copyObject(aggparam);
3354 }
3355 /* If no match, just fall through to process it normally */
3356 }
3357 if (IsA(node, AlternativeSubPlan))
3359 (AlternativeSubPlan *) node,
3360 context->num_exec),
3361 context);
3362 fix_expr_common(context->root, node);
3363 return expression_tree_mutator(node, fix_upper_expr_mutator, context);
3364}
3365
3366/*
3367 * set_returning_clause_references
3368 * Perform setrefs.c's work on a RETURNING targetlist
3369 *
3370 * If the query involves more than just the result table, we have to
3371 * adjust any Vars that refer to other tables to reference junk tlist
3372 * entries in the top subplan's targetlist. Vars referencing the result
3373 * table should be left alone, however (the executor will evaluate them
3374 * using the actual heap tuple, after firing triggers if any). In the
3375 * adjusted RETURNING list, result-table Vars will have their original
3376 * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
3377 *
3378 * We also must perform opcode lookup and add regclass OIDs to
3379 * root->glob->relationOids.
3380 *
3381 * 'rlist': the RETURNING targetlist to be fixed
3382 * 'topplan': the top subplan node that will be just below the ModifyTable
3383 * node (note it's not yet passed through set_plan_refs)
3384 * 'resultRelation': RT index of the associated result relation
3385 * 'rtoffset': how much to increment varnos by
3386 *
3387 * Note: the given 'root' is for the parent query level, not the 'topplan'.
3388 * This does not matter currently since we only access the dependency-item
3389 * lists in root->glob, but it would need some hacking if we wanted a root
3390 * that actually matches the subplan.
3391 *
3392 * Note: resultRelation is not yet adjusted by rtoffset.
3393 */
3394static List *
3396 List *rlist,
3397 Plan *topplan,
3398 Index resultRelation,
3399 int rtoffset)
3400{
3401 indexed_tlist *itlist;
3402
3403 /*
3404 * We can perform the desired Var fixup by abusing the fix_join_expr
3405 * machinery that formerly handled inner indexscan fixup. We search the
3406 * top plan's targetlist for Vars of non-result relations, and use
3407 * fix_join_expr to convert RETURNING Vars into references to those tlist
3408 * entries, while leaving result-rel Vars as-is.
3409 *
3410 * PlaceHolderVars will also be sought in the targetlist, but no
3411 * more-complex expressions will be. Note that it is not possible for a
3412 * PlaceHolderVar to refer to the result relation, since the result is
3413 * never below an outer join. If that case could happen, we'd have to be
3414 * prepared to pick apart the PlaceHolderVar and evaluate its contained
3415 * expression instead.
3416 */
3417 itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
3418
3419 rlist = fix_join_expr(root,
3420 rlist,
3421 itlist,
3422 NULL,
3423 resultRelation,
3424 rtoffset,
3425 NRM_EQUAL,
3426 NUM_EXEC_TLIST(topplan));
3427
3428 pfree(itlist);
3429
3430 return rlist;
3431}
3432
3433/*
3434 * fix_windowagg_condition_expr_mutator
3435 * Mutator function for replacing WindowFuncs with the corresponding Var
3436 * in the targetlist which references that WindowFunc.
3437 */
3438static Node *
3441{
3442 if (node == NULL)
3443 return NULL;
3444
3445 if (IsA(node, WindowFunc))
3446 {
3447 Var *newvar;
3448
3449 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3450 context->subplan_itlist,
3451 context->newvarno);
3452 if (newvar)
3453 return (Node *) newvar;
3454 elog(ERROR, "WindowFunc not found in subplan target lists");
3455 }
3456
3457 return expression_tree_mutator(node,
3459 context);
3460}
3461
3462/*
3463 * fix_windowagg_condition_expr
3464 * Converts references in 'runcondition' so that any WindowFunc
3465 * references are swapped out for a Var which references the matching
3466 * WindowFunc in 'subplan_itlist'.
3467 */
3468static List *
3470 List *runcondition,
3471 indexed_tlist *subplan_itlist)
3472{
3474
3475 context.root = root;
3476 context.subplan_itlist = subplan_itlist;
3477 context.newvarno = 0;
3478
3479 return (List *) fix_windowagg_condition_expr_mutator((Node *) runcondition,
3480 &context);
3481}
3482
3483/*
3484 * set_windowagg_runcondition_references
3485 * Converts references in 'runcondition' so that any WindowFunc
3486 * references are swapped out for a Var which references the matching
3487 * WindowFunc in 'plan' targetlist.
3488 */
3489static List *
3491 List *runcondition,
3492 Plan *plan)
3493{
3494 List *newlist;
3495 indexed_tlist *itlist;
3496
3497 itlist = build_tlist_index(plan->targetlist);
3498
3499 newlist = fix_windowagg_condition_expr(root, runcondition, itlist);
3500
3501 pfree(itlist);
3502
3503 return newlist;
3504}
3505
3506/*
3507 * find_minmax_agg_replacement_param
3508 * If the given Aggref is one that we are optimizing into a subquery
3509 * (cf. planagg.c), then return the Param that should replace it.
3510 * Else return NULL.
3511 *
3512 * This is exported so that SS_finalize_plan can use it before setrefs.c runs.
3513 * Note that it will not find anything until we have built a Plan from a
3514 * MinMaxAggPath, as root->minmax_aggs will never be filled otherwise.
3515 */
3516Param *
3518{
3519 if (root->minmax_aggs != NIL &&
3520 list_length(aggref->args) == 1)
3521 {
3522 TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3523 ListCell *lc;
3524
3525 foreach(lc, root->minmax_aggs)
3526 {
3527 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3528
3529 if (mminfo->aggfnoid == aggref->aggfnoid &&
3530 equal(mminfo->target, curTarget->expr))
3531 return mminfo->param;
3532 }
3533 }
3534 return NULL;
3535}
3536
3537
3538/*****************************************************************************
3539 * QUERY DEPENDENCY MANAGEMENT
3540 *****************************************************************************/
3541
3542/*
3543 * record_plan_function_dependency
3544 * Mark the current plan as depending on a particular function.
3545 *
3546 * This is exported so that the function-inlining code can record a
3547 * dependency on a function that it's removed from the plan tree.
3548 */
3549void
3551{
3552 /*
3553 * For performance reasons, we don't bother to track built-in functions;
3554 * we just assume they'll never change (or at least not in ways that'd
3555 * invalidate plans using them). For this purpose we can consider a
3556 * built-in function to be one with OID less than FirstUnpinnedObjectId.
3557 * Note that the OID generator guarantees never to generate such an OID
3558 * after startup, even at OID wraparound.
3559 */
3560 if (funcid >= (Oid) FirstUnpinnedObjectId)
3561 {
3562 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3563
3564 /*
3565 * It would work to use any syscache on pg_proc, but the easiest is
3566 * PROCOID since we already have the function's OID at hand. Note
3567 * that plancache.c knows we use PROCOID.
3568 */
3569 inval_item->cacheId = PROCOID;
3570 inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3571 ObjectIdGetDatum(funcid));
3572
3573 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3574 }
3575}
3576
3577/*
3578 * record_plan_type_dependency
3579 * Mark the current plan as depending on a particular type.
3580 *
3581 * This is exported so that eval_const_expressions can record a
3582 * dependency on a domain that it's removed a CoerceToDomain node for.
3583 *
3584 * We don't currently need to record dependencies on domains that the
3585 * plan contains CoerceToDomain nodes for, though that might change in
3586 * future. Hence, this isn't actually called in this module, though
3587 * someday fix_expr_common might call it.
3588 */
3589void
3591{
3592 /*
3593 * As in record_plan_function_dependency, ignore the possibility that
3594 * someone would change a built-in domain.
3595 */
3596 if (typid >= (Oid) FirstUnpinnedObjectId)
3597 {
3598 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3599
3600 /*
3601 * It would work to use any syscache on pg_type, but the easiest is
3602 * TYPEOID since we already have the type's OID at hand. Note that
3603 * plancache.c knows we use TYPEOID.
3604 */
3605 inval_item->cacheId = TYPEOID;
3606 inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3607 ObjectIdGetDatum(typid));
3608
3609 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3610 }
3611}
3612
3613/*
3614 * extract_query_dependencies
3615 * Given a rewritten, but not yet planned, query or queries
3616 * (i.e. a Query node or list of Query nodes), extract dependencies
3617 * just as set_plan_references would do. Also detect whether any
3618 * rewrite steps were affected by RLS.
3619 *
3620 * This is needed by plancache.c to handle invalidation of cached unplanned
3621 * queries.
3622 *
3623 * Note: this does not go through eval_const_expressions, and hence doesn't
3624 * reflect its additions of inlined functions and elided CoerceToDomain nodes
3625 * to the invalItems list. This is obviously OK for functions, since we'll
3626 * see them in the original query tree anyway. For domains, it's OK because
3627 * we don't care about domains unless they get elided. That is, a plan might
3628 * have domain dependencies that the query tree doesn't.
3629 */
3630void
3632 List **relationOids,
3633 List **invalItems,
3634 bool *hasRowSecurity)
3635{
3636 PlannerGlobal glob;
3638
3639 /* Make up dummy planner state so we can use this module's machinery */
3640 MemSet(&glob, 0, sizeof(glob));
3641 glob.type = T_PlannerGlobal;
3642 glob.relationOids = NIL;
3643 glob.invalItems = NIL;
3644 /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
3645 glob.dependsOnRole = false;
3646
3647 MemSet(&root, 0, sizeof(root));
3648 root.type = T_PlannerInfo;
3649 root.glob = &glob;
3650
3652
3653 *relationOids = glob.relationOids;
3654 *invalItems = glob.invalItems;
3655 *hasRowSecurity = glob.dependsOnRole;
3656}
3657
3658/*
3659 * Tree walker for extract_query_dependencies.
3660 *
3661 * This is exported so that expression_planner_with_deps can call it on
3662 * simple expressions (post-planning, not before planning, in that case).
3663 * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
3664 * and invalItems lists are added to as needed.
3665 */
3666bool
3668{
3669 if (node == NULL)
3670 return false;
3671 Assert(!IsA(node, PlaceHolderVar));
3672 if (IsA(node, Query))
3673 {
3674 Query *query = (Query *) node;
3675 ListCell *lc;
3676
3677 if (query->commandType == CMD_UTILITY)
3678 {
3679 /*
3680 * This logic must handle any utility command for which parse
3681 * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3682 *
3683 * Notably, CALL requires its own processing.
3684 */
3685 if (IsA(query->utilityStmt, CallStmt))
3686 {
3687 CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3688
3689 /* We need not examine funccall, just the transformed exprs */
3690 (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3691 context);
3692 (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3693 context);
3694 return false;
3695 }
3696
3697 /*
3698 * Ignore other utility statements, except those (such as EXPLAIN)
3699 * that contain a parsed-but-not-planned query. For those, we
3700 * just need to transfer our attention to the contained query.
3701 */
3702 query = UtilityContainsQuery(query->utilityStmt);
3703 if (query == NULL)
3704 return false;
3705 }
3706
3707 /* Remember if any Query has RLS quals applied by rewriter */
3708 if (query->hasRowSecurity)
3709 context->glob->dependsOnRole = true;
3710
3711 /* Collect relation OIDs in this Query's rtable */
3712 foreach(lc, query->rtable)
3713 {
3714 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3715
3716 if (rte->rtekind == RTE_RELATION ||
3717 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3718 (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3719 context->glob->relationOids =
3720 lappend_oid(context->glob->relationOids, rte->relid);
3721 }
3722
3723 /* And recurse into the query's subexpressions */
3725 context, 0);
3726 }
3727 /* Extract function dependencies and check for regclass Consts */
3728 fix_expr_common(context, node);
3730 context);
3731}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:434
unsigned int Index
Definition: c.h:585
#define MemSet(start, val, len)
Definition: c.h:991
#define OidIsValid(objectId)
Definition: c.h:746
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
Assert(PointerIsAligned(start, uint64))
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:571
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:388
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
TargetEntry * flatCopyTargetEntry(TargetEntry *src_tle)
Definition: makefuncs.c:322
void pfree(void *pointer)
Definition: mcxt.c:1528
void * palloc0(Size size)
Definition: mcxt.c:1351
void * palloc(Size size)
Definition: mcxt.c:1321
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1883
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1872
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:230
double Cost
Definition: nodes.h:257
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define DO_AGGSPLIT_COMBINE(as)
Definition: nodes.h:391
@ CMD_UTILITY
Definition: nodes.h:276
@ AGGSPLIT_FINAL_DESERIAL
Definition: nodes.h:387
@ AGGSPLIT_INITIAL_SERIAL
Definition: nodes.h:385
#define makeNode(_type_)
Definition: nodes.h:161
@ JOIN_INNER
Definition: nodes.h:299
char * bmsToString(const Bitmapset *bms)
Definition: outfuncs.c:814
RTEPermissionInfo * getRTEPermissionInfo(List *rteperminfos, RangeTblEntry *rte)
RTEPermissionInfo * addRTEPermissionInfo(List **rteperminfos, RangeTblEntry *rte)
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1033
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
@ RTE_RELATION
Definition: parsenodes.h:1026
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:2080
@ UPPERREL_FINAL
Definition: pathnodes.h:79
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial_int(l)
Definition: pg_list.h:179
#define forthree(cell1, list1, cell2, list2, cell3, list3)
Definition: pg_list.h:563
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial(l)
Definition: pg_list.h:178
#define list_nth_node(type, list, n)
Definition: pg_list.h:327
#define plan(x)
Definition: pg_regress.c:161
void mark_partial_aggref(Aggref *agg, AggSplit aggsplit)
Definition: planner.c:5690
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:702
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:700
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:701
#define outerPlan(node)
Definition: plannodes.h:234
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:247
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
unsigned int Oid
Definition: postgres_ext.h:30
#define ROWID_VAR
Definition: primnodes.h:245
@ PARAM_MULTIEXPR
Definition: primnodes.h:387
#define IS_SPECIAL_VARNO(varno)
Definition: primnodes.h:247
@ VAR_RETURNING_DEFAULT
Definition: primnodes.h:256
#define OUTER_VAR
Definition: primnodes.h:243
#define INNER_VAR
Definition: primnodes.h:242
#define INDEX_VAR
Definition: primnodes.h:244
tree ctl root
Definition: radixtree.h:1857
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
NullingRelsMatch
Definition: setrefs.c:35
@ NRM_EQUAL
Definition: setrefs.c:36
@ NRM_SUPERSET
Definition: setrefs.c:38
@ NRM_SUBSET
Definition: setrefs.c:37
void record_plan_type_dependency(PlannerInfo *root, Oid typid)
Definition: setrefs.c:3590
#define NUM_EXEC_QUAL(parentplan)
Definition: setrefs.c:117
static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:1949
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:2026
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:392
static Node * fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
Definition: setrefs.c:3122
static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos, RangeTblEntry *rte)
Definition: setrefs.c:538
static Plan * set_append_references(PlannerInfo *root, Append *aplan, int rtoffset)
Definition: setrefs.c:1817
Plan * set_plan_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:288
static Plan * set_mergeappend_references(PlannerInfo *root, MergeAppend *mplan, int rtoffset)
Definition: setrefs.c:1884
static List * set_returning_clause_references(PlannerInfo *root, List *rlist, Plan *topplan, Index resultRelation, int rtoffset)
Definition: setrefs.c:3395
static Node * fix_param_node(PlannerInfo *root, Param *p)
Definition: setrefs.c:2121
void record_plan_function_dependency(PlannerInfo *root, Oid funcid)
Definition: setrefs.c:3550
static Relids offset_relid_set(Relids relids, int rtoffset)
Definition: setrefs.c:1982
static bool flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt)
Definition: setrefs.c:493
static indexed_tlist * build_tlist_index(List *tlist)
Definition: setrefs.c:2755
static List * set_windowagg_runcondition_references(PlannerInfo *root, List *runcondition, Plan *plan)
Definition: setrefs.c:3490
bool trivial_subqueryscan(SubqueryScan *plan)
Definition: setrefs.c:1472
static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:2477
static Var * search_indexed_tlist_for_sortgroupref(Expr *node, Index sortgroupref, indexed_tlist *itlist, int newvarno)
Definition: setrefs.c:3022
static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
Definition: setrefs.c:481
static Node * fix_upper_expr(PlannerInfo *root, Node *node, indexed_tlist *subplan_itlist, int newvarno, int rtoffset, NullingRelsMatch nrm_match, double num_exec)
Definition: setrefs.c:3274
static void set_param_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:2565
static Var * search_indexed_tlist_for_non_var(Expr *node, indexed_tlist *itlist, int newvarno)
Definition: setrefs.c:2982
static Node * fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
Definition: setrefs.c:3294
Param * find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
Definition: setrefs.c:3517
static Node * fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:2243
static void set_foreignscan_references(PlannerInfo *root, ForeignScan *fscan, int rtoffset)
Definition: setrefs.c:1586
static Plan * set_subqueryscan_references(PlannerInfo *root, SubqueryScan *plan, int rtoffset)
Definition: setrefs.c:1403
static Var * search_indexed_tlist_for_phv(PlaceHolderVar *phv, indexed_tlist *itlist, int newvarno, NullingRelsMatch nrm_match)
Definition: setrefs.c:2929
static Plan * set_indexonlyscan_references(PlannerInfo *root, IndexOnlyScan *plan, int rtoffset)
Definition: setrefs.c:1329
static List * fix_join_expr(PlannerInfo *root, List *clauses, indexed_tlist *outer_itlist, indexed_tlist *inner_itlist, Index acceptable_rel, int rtoffset, NullingRelsMatch nrm_match, double num_exec)
Definition: setrefs.c:3100
static Node * convert_combining_aggrefs(Node *node, void *context)
Definition: setrefs.c:2620
static void set_dummy_tlist_references(Plan *plan, int rtoffset)
Definition: setrefs.c:2688
static int register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
Definition: setrefs.c:1756
static void set_customscan_references(PlannerInfo *root, CustomScan *cscan, int rtoffset)
Definition: setrefs.c:1673
#define ISREGCLASSCONST(con)
Definition: setrefs.c:126
void extract_query_dependencies(Node *query, List **relationOids, List **invalItems, bool *hasRowSecurity)
Definition: setrefs.c:3631
static Node * fix_windowagg_condition_expr_mutator(Node *node, fix_windowagg_cond_context *context)
Definition: setrefs.c:3439
static Var * copyVar(Var *var)
Definition: setrefs.c:2004
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3667
static List * fix_windowagg_condition_expr(PlannerInfo *root, List *runcondition, indexed_tlist *subplan_itlist)
Definition: setrefs.c:3469
#define NUM_EXEC_TLIST(parentplan)
Definition: setrefs.c:116
static Node * fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan, double num_exec)
Definition: setrefs.c:2152
static void set_join_references(PlannerInfo *root, Join *join, int rtoffset)
Definition: setrefs.c:2328
static indexed_tlist * build_tlist_index_other_vars(List *tlist, int ignore_rel)
Definition: setrefs.c:2806
static Plan * clean_up_removed_plan_level(Plan *parent, Plan *child)
Definition: setrefs.c:1542
static Node * fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
Definition: setrefs.c:2208
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:615
static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:2308
static Var * search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist, int newvarno, int rtoffset, NullingRelsMatch nrm_match)
Definition: setrefs.c:2864
#define fix_scan_list(root, lst, rtoffset, num_exec)
Definition: setrefs.c:130
AggSplit aggsplit
Definition: plannodes.h:1139
Oid aggfnoid
Definition: primnodes.h:461
List * aggdistinct
Definition: primnodes.h:491
List * args
Definition: primnodes.h:485
Expr * aggfilter
Definition: primnodes.h:494
List * aggorder
Definition: primnodes.h:488
Index child_relid
Definition: pathnodes.h:3111
List * translated_vars
Definition: pathnodes.h:3138
Index parent_relid
Definition: pathnodes.h:3110
int part_prune_index
Definition: plannodes.h:361
Bitmapset * apprelids
Definition: plannodes.h:345
Plan plan
Definition: plannodes.h:343
List * appendplans
Definition: plannodes.h:346
Plan plan
Definition: plannodes.h:444
List * bitmapplans
Definition: plannodes.h:445
List * bitmapqualorig
Definition: plannodes.h:646
List * indexqualorig
Definition: plannodes.h:630
List * indexqual
Definition: plannodes.h:628
List * bitmapplans
Definition: plannodes.h:460
Plan plan
Definition: plannodes.h:458
FuncExpr * funcexpr
Definition: parsenodes.h:3604
List * outargs
Definition: parsenodes.h:3606
Scan scan
Definition: plannodes.h:753
List * custom_scan_tlist
Definition: plannodes.h:876
Scan scan
Definition: plannodes.h:866
Bitmapset * custom_relids
Definition: plannodes.h:878
List * custom_plans
Definition: plannodes.h:870
Bitmapset * fs_relids
Definition: plannodes.h:842
Bitmapset * fs_base_relids
Definition: plannodes.h:844
Index resultRelation
Definition: plannodes.h:828
List * fdw_scan_tlist
Definition: plannodes.h:838
List * functions
Definition: plannodes.h:720
List * hashclauses
Definition: plannodes.h:999
List * hashkeys
Definition: plannodes.h:1007
List * hashkeys
Definition: plannodes.h:1352
List * indexorderby
Definition: plannodes.h:546
Scan scan
Definition: plannodes.h:538
List * indexqualorig
Definition: plannodes.h:544
List * indexqual
Definition: plannodes.h:542
List * indexorderbyorig
Definition: plannodes.h:548
List * joinqual
Definition: plannodes.h:924
JoinType jointype
Definition: plannodes.h:921
Plan plan
Definition: plannodes.h:1422
Node * limitCount
Definition: plannodes.h:1428
Node * limitOffset
Definition: plannodes.h:1425
Definition: pg_list.h:54
List * rowMarks
Definition: plannodes.h:1408
Plan plan
Definition: plannodes.h:1406
List * param_exprs
Definition: plannodes.h:1037
int part_prune_index
Definition: plannodes.h:400
Bitmapset * apprelids
Definition: plannodes.h:374
List * mergeplans
Definition: plannodes.h:376
List * mergeclauses
Definition: plannodes.h:975
Param * param
Definition: pathnodes.h:3274
Expr * target
Definition: pathnodes.h:3259
Index nominalRelation
Definition: plannodes.h:289
List * mergeJoinConditions
Definition: plannodes.h:331
List * resultRelations
Definition: plannodes.h:295
List * onConflictSet
Definition: plannodes.h:319
List * exclRelTlist
Definition: plannodes.h:327
List * mergeActionLists
Definition: plannodes.h:329
List * returningLists
Definition: plannodes.h:305
List * withCheckOptionLists
Definition: plannodes.h:299
Index rootRelation
Definition: plannodes.h:291
Node * onConflictWhere
Definition: plannodes.h:323
List * rowMarks
Definition: plannodes.h:311
Index exclRelRTI
Definition: plannodes.h:325
Var * paramval
Definition: plannodes.h:953
List * nestParams
Definition: plannodes.h:942
Definition: nodes.h:135
int paramid
Definition: primnodes.h:394
ParamKind paramkind
Definition: primnodes.h:393
Bitmapset * relids
Definition: plannodes.h:1590
Relids phnullingrels
Definition: pathnodes.h:2932
uint32 hashValue
Definition: plannodes.h:1747
Index prti
Definition: plannodes.h:1535
struct Plan * lefttree
Definition: plannodes.h:206
Cost total_cost
Definition: plannodes.h:172
struct Plan * righttree
Definition: plannodes.h:207
bool parallel_aware
Definition: plannodes.h:186
Cost startup_cost
Definition: plannodes.h:170
List * qual
Definition: plannodes.h:204
bool parallel_safe
Definition: plannodes.h:188
List * targetlist
Definition: plannodes.h:202
List * initPlan
Definition: plannodes.h:209
Bitmapset * prunableRelids
Definition: pathnodes.h:130
List * subplans
Definition: pathnodes.h:105
bool dependsOnRole
Definition: pathnodes.h:169
Bitmapset * allRelids
Definition: pathnodes.h:123
List * appendRelations
Definition: pathnodes.h:142
List * finalrowmarks
Definition: pathnodes.h:136
List * invalItems
Definition: pathnodes.h:151
List * relationOids
Definition: pathnodes.h:148
List * finalrteperminfos
Definition: pathnodes.h:133
List * partPruneInfos
Definition: pathnodes.h:145
List * finalrtable
Definition: pathnodes.h:117
List * init_plans
Definition: pathnodes.h:320
PlannerGlobal * glob
Definition: pathnodes.h:226
List * rtable
Definition: parsenodes.h:170
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:136
TableFunc * tablefunc
Definition: parsenodes.h:1198
struct TableSampleClause * tablesample
Definition: parsenodes.h:1112
Query * subquery
Definition: parsenodes.h:1118
List * values_lists
Definition: parsenodes.h:1204
List * functions
Definition: parsenodes.h:1191
RTEKind rtekind
Definition: parsenodes.h:1061
Index relid
Definition: pathnodes.h:942
PlannerInfo * subroot
Definition: pathnodes.h:977
Node * resconstantqual
Definition: plannodes.h:251
Plan plan
Definition: plannodes.h:250
struct TableSampleClause * tablesample
Definition: plannodes.h:496
Scan scan
Definition: plannodes.h:494
Index scanrelid
Definition: plannodes.h:476
Scan scan
Definition: plannodes.h:485
int plan_id
Definition: primnodes.h:1087
List * setParam
Definition: primnodes.h:1105
Cost startup_cost
Definition: primnodes.h:1110
Cost per_call_cost
Definition: primnodes.h:1111
TableFunc * tablefunc
Definition: plannodes.h:744
Expr * expr
Definition: primnodes.h:2219
AttrNumber resno
Definition: primnodes.h:2221
Index ressortgroupref
Definition: primnodes.h:2225
List * tidrangequals
Definition: plannodes.h:675
Scan scan
Definition: plannodes.h:659
List * tidquals
Definition: plannodes.h:661
Scan scan
Definition: plannodes.h:731
List * values_lists
Definition: plannodes.h:733
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
VarReturningType varreturningtype
Definition: primnodes.h:297
Index varlevelsup
Definition: primnodes.h:294
Node * endOffset
Definition: plannodes.h:1214
List * runConditionOrig
Definition: plannodes.h:1220
Node * startOffset
Definition: plannodes.h:1211
List * runCondition
Definition: plannodes.h:1217
NullingRelsMatch nrm_match
Definition: setrefs.c:72
indexed_tlist * outer_itlist
Definition: setrefs.c:68
PlannerInfo * root
Definition: setrefs.c:67
indexed_tlist * inner_itlist
Definition: setrefs.c:69
PlannerInfo * root
Definition: setrefs.c:60
indexed_tlist * subplan_itlist
Definition: setrefs.c:79
PlannerInfo * root
Definition: setrefs.c:78
NullingRelsMatch nrm_match
Definition: setrefs.c:82
indexed_tlist * subplan_itlist
Definition: setrefs.c:89
PlannerInfo * root
Definition: setrefs.c:88
PlannerGlobal * glob
Definition: setrefs.c:96
tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]
Definition: setrefs.c:55
bool has_ph_vars
Definition: setrefs.c:53
bool has_non_vars
Definition: setrefs.c:54
int num_vars
Definition: setrefs.c:52
List * tlist
Definition: setrefs.c:51
AttrNumber resno
Definition: setrefs.c:45
Bitmapset * varnullingrels
Definition: setrefs.c:46
int varno
Definition: setrefs.c:43
AttrNumber varattno
Definition: setrefs.c:44
Definition: regcomp.c:282
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2312
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:118
TargetEntry * tlist_member(Expr *node, List *targetlist)
Definition: tlist.c:79
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318
#define FirstUnpinnedObjectId
Definition: transam.h:196
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2179