Nanoinformatics: Difference between revisions

Content deleted Content added
ARECCfan (talk | contribs)
History: added text and references about nano information sharing and the 2004 Buxton meeting.
OAbot (talk | contribs)
m Open access bot: hdl updated in citation with #oabot.
 
(44 intermediate revisions by 16 users not shown)
Line 1:
{{short description|Informatics of nanomaterials}}
'''Nanoinformatics''' is the application of [[informatics]] to [[nanotechnology]]. It is an interdisciplinary field that develops methods and software tools for understanding nanomaterials, their properties, and their interactions with biological entities, and using that information more efficiently. It differs from [[cheminformatics]] in that [[nanomaterials]] usually involve [[Dispersity|nonuniform]] collections of particles that have distributions of physical properties that must be specified. The nanoinformatics infrastructure includes [[Ontology (information science)|ontologies]] for nanomaterials, file formats, and data repositories.
 
Nanoinformatics has applications for improving workflows in fundamental research, manufacturing, and [[environmental health]], allowing the use of high-throughput data-driven methods to analyze broad sets of experimental results. [[Nanomedicine]] applications include analysis of nanoparticle-based pharmaceuticals for [[structure–activity relationship]]s in a similar manner to [[bioinformatics]].
 
== Background ==
[[File:Nanoinformatics as a convergence.jpg|thumb|Context of nanoinformatics as a convergence of science and practice at the nexus of safety, health, well-being, and productivity; risk management; and emerging nanotechnology. ]]
 
While conventional chemicals are specified by their [[chemical composition]] and [[concentration]], nanoparticles have other physical properties that must be measured for a complete description, such as [[Particle size|size]], [[shape]], [[Surface science|surface properties]], [[crystallinity]], and [[Dispersion (chemistry)|dispersion state]]. In addition, preparations of nanoparticles are often [[Dispersity|non-uniform]], having distributions of of these properties that must also be specified. These properties influence their bulk chemical and physical properties, as well as their biological effects. They are important in both the experimental [[characterization of nanoparticles]] and their representation in an informatics system.<ref name=":3">{{Cite journal|last=Hassellöv|first=Martin|last2=Readman|first2=James W.|last3=Ranville|first3=James F.|last4=Tiede|first4=Karen|date=2008-07-01|title=Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles|journal=Ecotoxicology|language=en|volume=17|issue=5|pages=344–361|doi=10.1007/s10646-008-0225-x|issn=0963-9292|pmid=18483764}}</ref><ref name=":7">{{Cite journal|last=Powers|first=Kevin W.|last2=Palazuelos|first2=Maria|last3=Moudgil|first3=Brij M.|last4=Roberts|first4=Stephen M.|date=2007-01-01|title=Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies|journal=Nanotoxicology|volume=1|issue=1|pages=42–51|doi=10.1080/17435390701314902|issn=1743-5390}}</ref>
While conventional chemicals are specified by their [[chemical composition]], and [[concentration]], nanoparticles have other physical properties that must be measured for a complete description, such as [[Particle size|size]], [[shape]], [[Surface science|surface properties]], [[crystallinity]], and [[Dispersion (chemistry)|dispersion state]]. In addition, preparations of nanoparticles are often [[Dispersity|non-uniform]], having distributions of these properties that must also be specified. These molecular-scale properties influence their macroscopic chemical and physical properties, as well as their biological effects. They are important in both the experimental [[characterization of nanoparticles]] and their representation in an informatics system.<ref name=":3">{{Cite journal|last1=Hassellöv|first1=Martin|last2=Readman|first2=James W.|last3=Ranville|first3=James F.|last4=Tiede|first4=Karen|date=2008-07-01|title=Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles|journal=Ecotoxicology|language=en|volume=17|issue=5|pages=344–361|doi=10.1007/s10646-008-0225-x|issn=0963-9292|pmid=18483764|s2cid=25291395}}</ref><ref name=":7">{{Cite journal|last1=Powers|first1=Kevin W.|last2=Palazuelos|first2=Maria|last3=Moudgil|first3=Brij M.|last4=Roberts|first4=Stephen M.|date=2007-01-01|title=Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies|journal=Nanotoxicology|volume=1|issue=1|pages=42–51|doi=10.1080/17435390701314902|s2cid=137174566|issn=1743-5390}}</ref> The context of nanoinformatics is that effective development and implementation of the imaginedpotential applications of nanotechnology requires the harnessing of information at the intersection of safety, health, well-being, and productivity; [[risk management]]; and emerging nanotechnology.<ref name=":2" /><ref name=":4">{{Cite book|title=Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management |lastlast1=Hoover|firstfirst1=M.D.|last2=Cash|first2=L.J. |last3=Feitshans|first3=I.L|last4=Hendren|first4=C.O.|last5=Harper|first5=S.L. |publisher=Elsevier|year=2018|isbn=9780128135884|editor-last=Hull|editor-first=M.S.|edition=3rd|location=Oxford|pages=83–117|chapter=A Nanoinformatics Approach to Safety, Health, Well-being, and Productivity|doi=10.1016/B978-0-12-813588-4.00005-1|editor-last2=Bowman|editor-first2=D.M.}}</ref>[[File:Nanoinformatics as a Life Cycle.jpg|thumb|A graphical representation of a working definition of nanoinformatics as a life-cycle process]]
 
One working definition of nanoinformatics developed through the community-based Nanoinformatics 2020 Roadmap<ref name=":1">{{cite web|url=https://eprints.internano.org/607/1/Roadmap_FINAL041311.pdf|title=Nanoinformatics 2020 Roadmap|last1=Diana|first1=De la Iglesia|last2=Stacey|first2=Harper|date=2011|website=National Nanomanufacturing Network|pages=9–13|via=|doi=10.4053/rp001-110413|archive-url=|archive-date=|dead-url=|access-date=|last3=Mark D|first3=Hoover|last4=Fred|first4=Klaessig|last5=Phil|first5=Lippell|last6=Bettye|first6=Maddux|last7=Jeffrey|first7=Morse|last8=Andre|first8=Nel|last9=Krishna|first9=Rajan|last10=Rebecca|first10=Reznik-Zellen|last11=Mark T.|first11=Tuominen}}</ref> and subsequently expanded<ref name=":2">{{Cite journal|last=Hoover|first=Mark D.|last2=Myers|first2=David S.|last3=Cash|first3=Leigh J.|last4=Guilmette|first4=Raymond A.|last5=Kreyling|first5=Wolfgang G.|last6=Oberdörster|first6=Günter|last7=Smith|first7=Rachel|last8=Cassata|first8=James R.|last9=Boecker|first9=Bruce B.|date=2015-02-01|title=Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology:|url=http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004032-201502000-00016|journal=Health Physics|language=en|volume=108|issue=2|pages=179–194|doi=10.1097/HP.0000000000000250|issn=0017-9078|via=}}</ref> is:
[[File:Nanoinformatics as a Life Cycle.jpg|thumb|A graphical representation of a working definition of nanoinformatics as a life-cycle process]]
 
One working definition of nanoinformatics developed through the community-based Nanoinformatics 2020 Roadmap<ref name=":1">{{cite webjournal|url=https://eprints.internano.org/607/1/Roadmap_FINAL041311.pdf|title=Nanoinformatics 2020 Roadmap|last1=Diana|first1=De la Iglesia|last2=Stacey|first2=Harper|date=2011|website=National Nanomanufacturing Network|pages=9–13|via=|doi=10.4053/rp001-110413|archive-url=|archive-date=|dead-url=|access-date=|last3=Mark D|first3=Hoover|last4=Fred|first4=Klaessig|last5=Phil|first5=Lippell |last6=Bettye|first6=Maddux|last7=Jeffrey|first7=Morse|last8=Andre|first8=Nel|last9=Krishna|first9=Rajan|last10=Rebecca|first10=Reznik-Zellen|last11=Mark T.|first11=Tuominen}}</ref> and subsequently expanded<ref name=":2">{{Cite journal|lastlast1=Hoover|firstfirst1=Mark D.|last2=Myers|first2=David S.|last3=Cash|first3=Leigh J.|last4=Guilmette|first4=Raymond A.|last5=Kreyling|first5=Wolfgang G.|last6=Oberdörster|first6=Günter|last7=Smith|first7=Rachel|last8=Cassata|first8=James R.|last9=Boecker|first9=Bruce B.|date=2015-02-01|title=Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology:|url=http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004032-201502000-00016|journal=Health Physics|language=en|volume=108|issue=2|pages=179–194|doi=10.1097/HP.0000000000000250|pmid=25551501|osti=1239283|s2cid=42732844|issn=0017-9078|via=}}</ref> is:
 
* Determining which information is relevant to meeting the safety, health, well-being, and productivity objectives of the nanoscale science, engineering, and technology community;
Line 15 ⟶ 19:
 
== Data representations ==
Although nanotechnology is the subject of significant experimentation, mostmuch of the data isare not stored in a standardized formatformats or sharedbroadly accessible. Nanoinformatics initiatives seek to coordinate developments of data standards and informatics methods.<ref name=":1" />
 
=== Ontologies ===
[[File:ENanoMapper ontology Hastings et al 2015 J Biomed Semantics 6-10 fig 2.gif|thumb|An overview of the eNanoMapper nanomaterial ontology]]
 
In the context of information science, an [[Ontology (information science)|ontology]] is a formal [[Representation (systemics)|representation]] of knowledge within a [[Domain of discourse|domain]], using hierarchies of terms including their definitions, attributedattributes, and relations. Ontologies provide a common terminology in a machine-readable framework that facilitates sharing and [[Knowledge discovery|discovery]] of data. Having an established ontology for nanoparticles is important for cancer [[nanomedicine]] due to the need of researchers to search, access, and analyze large amounts of data.<ref name=":0" /><ref>{{cite journal |last1=Maojo |first1=Victor |last2=Fritts |first2=Martin |last3=Martin-Sanchez |first3=Fernando |last4=De la Iglesia |first4=Diana |last5=Cachau |first5=Raul E. |last6=Garcia-Remesal |first6=Miguel |last7=Crespo |first7=Jose |last8=Mitchell |first8=Joyce A. |last9=Anguita |first9=Alberto |last10=Baker |first10=Nathan |last11=Barreiro |first11=Jose Maria |last12=Benitez |first12=Sonia E. |last13=De la Calle |first13=Guillermo |last14=Facelli |first14=Julio C. |last15=Ghazal |first15=Peter |last16=Geissbuhler |first16=Antoine |last17=Gonzalez-Nilo |first17=Fernando |last18=Graf |first18=Norbert |last19=Grangeat |first19=Pierre |last20=Hermosilla |first20=Isabel |last21=Hussein |first21=Rada |last22=Kern |first22=Josipa |last23=Koch |first23=Sabine |last24=Legre |first24=Yannick |last25=Lopez-Alonso |first25=Victoria |last26=Lopez-Campos |first26=Guillermo |last27=Milanesi |first27=Luciano |last28=Moustakis |first28=Vassilis |last29=Munteanu |first29=Cristian |last30=Otero |first30=Paula |last31=Pazos |first31=Alejandro |last32=Perez-Rey |first32=David |last33=Potamias |first33=George |last34=Sanz |first34=Ferran |last35=Kulikowski |first35=Casimir |title=Nanoinformatics: developing new computing applications for nanomedicine |journal=Computing |date=7 March 2012 |volume=94 |issue=6 |pages=521–539 |doi=10.1007/s00607-012-0191-2|pmid=22942787 |pmc=3430140 |s2cid=1770704 }}</ref>
 
The NanoParticle Ontology is an ontology for the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. It uses the [[Basic Formal Ontology]] framework and is implemented in the [[Web Ontology Language]]. It is hosted by the [[National Center for Biomedical Ontology]] and maintained on [[GitHub]].<ref name=":0">{{cite journal |last1=Thomas |first1=Dennis G. |last2=Pappu |first2=Rohit V. |last3=Baker |first3=Nathan A. |title=NanoParticle Ontology for cancer nanotechnology research |journal=Journal of Biomedical Informatics |date=February 2011 |volume=44 |issue=1 |pages=59–74 |doi=10.1016/j.jbi.2010.03.001|pmid=20211274 |pmc=3042056 }}</ref> The eNanoMapper Ontology is more recent and reuses wherever possible already existing domain ontologies. As such, it reuses and extends the NanoParticle Ontology, but also the BioAssay Ontology, [[Experimental Factor Ontology]], Unit Ontology, and [[ChEBI]].<ref>{{cite journal|last1=Hastings|first1=Janna|last2=Jeliazkova|first2=Nina|last3=Owen|first3=Gareth|last4=Tsiliki|first4=Georgia|last5=Munteanu|first5=Cristian R|last6=Steinbeck|first6=Christoph|last7=Willighagen|first7=Egon|date=21 March 2015|title=eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment|journal=Journal of Biomedical Semantics|volume=6|issue=1|pages=10|doi=10.1186/s13326-015-0005-5|pmid=25815161|pmc=4374589 |doi-access=free }}</ref>
 
=== File formats ===
[[File:ISA-TAB-Nano flowchart.jpg|thumb|Flowchart depicting the ways to identify different components of a material sample to guide the creation of an ISA-TAB-Nano Material file]]
 
ISA-TAB-Nano is a set of four spreadsheet-based file formats for representing and sharing nanomaterial data, based on the [[ISA-TAB]] metadata standard.<ref>{{Cite journal|lastlast1=Thomas|firstfirst1=Dennis G|last2=Gaheen|first2=Sharon|last3=Harper|first3=Stacey L|last4=Fritts|first4=Martin|last5=Klaessig|first5=Fred|last6=Hahn-Dantona|first6=Elizabeth|last7=Paik|first7=David|last8=Pan|first8=Sue|last9=Stafford|first9=Grace A|date=2013|title=ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format|url=http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-13-2|journal=BMC Biotechnology|language=en|volume=13|issue=1|pages=2|doi=10.1186/1472-6750-13-2|issn=1472-6750|pmc=3598649|pmid=23311978 |doi-access=free }}</ref><ref>{{cite journal |last1=Marchese Robinson |first1=Richard L |last2=Cronin |first2=Mark T D |last3=Richarz |first3=Andrea-Nicole |last4=Rallo |first4=Robert |title=An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology |journal=Beilstein Journal of Nanotechnology |date=5 October 2015 |volume=6 |pages=1978–1999 |doi=10.3762/bjnano.6.202|pmid=26665069 |pmc=4660926 }}</ref> based on the [[ISA-TAB]] metadata standard.<ref>{{cite journal |last1=González-Beltrán |first1=Alejandra |last2=Maguire |first2=Eamonn |last3=Sansone |first3=Susanna-Assunta |last4=Rocca-Serra |first4=Philippe |title=linkedISA: semantic representation of ISA-Tab experimental metadata |journal=BMC Bioinformatics |date=27 November 2014 |volume=15 |issue=S14 |pages=S4 |doi=10.1186/1471-2105-15-S14-S4|pmid=25472428 |pmc=4255742 |doi-access=free }}</ref> In Europe, other templates have been adopted that were developed by the [[Institute of Occupational Medicine]],<ref name=":6" /> and by the [[Joint Research Centre]] for the NANoREG project.<ref>{{cite book |last1=Totaro |first1=Sara |last2=Crutzen |first2=Hugues |last3=Sintes |first3=Juan Riego |title=Data logging templates for the environmental, health and safety assessment of nanomaterials |date=2017 |isbn=978-92-79-62614-2 |url=http://publications.jrc.ec.europa.eu/repository/handle/JRC103178 |access-date=30 May 2019}}</ref>
 
== Tools ==
 
Nanoinformatics is not limited to aggregating and sharing information about nanotechnologies, but has many complementary tools, some originating from [[Cheminformatics|chemoinformatics]] and [[bioinformatics]].<ref>{{cite journal |last1=Melagraki |first1=Georgia |last2=Afantitis |first2=Antreas |title=Computational toxicology: From cheminformatics to nanoinformatics |journal=Food and Chemical Toxicology |date=February 2018 |volume=112 |pages=476–477 |doi=10.1016/j.fct.2018.01.014|pmid=29331732 }}</ref><ref>{{cite journal |last1=Panneerselvam |first1=Suresh |last2=Choi |first2=Sangdun |title=Nanoinformatics: Emerging Databases and Available Tools |journal=International Journal of Molecular Sciences |date=25 April 2014 |volume=15 |issue=5 |pages=7158–7182 |doi=10.3390/ijms15057158|pmid=24776761 |pmc=4057665 |doi-access=free }}</ref>
 
=== Databases and repositories ===
 
Over the last couple of years, various databases have been made available.<ref>{{cite journal |last1=Willighagen |first1=Egon |last2=Jeliazkov |first2=Vedrin |last3=Jeliazkova |first3=Nina |last4=Smeets |first4=Bart |last5=P. Mustad |first5=Axel |title=Summary of the Spring 2014 NSC Database Survey |language=en |doi=10.6084/m9.figshare.1195888.v1 |date=7 October 2014|publisher=Figshare |s2cid=62739488 }}</ref>
Over the last couple of years, various databases have been made available.<ref>{{cite web |last1=Willighagen |first1=Egon |last2=Jeliazkov |first2=Vedrin |last3=Jeliazkova |first3=Nina |last4=Smeets |first4=Bart |last5=P. Mustad |first5=Axel |title=Summary of the Spring 2014 NSC Database Survey |url=https://doi.org/10.6084/m9.figshare.1195888.v1 |website=Figshare |accessdate=16 May 2019 |language=en |doi=10.6084/m9.figshare.1195888.v1 |date=7 October 2014}}</ref> caNanoLab, developed by the U.S. [[National Cancer Institute]], focuses on nanotechnologies related to biomedicine.<ref>{{cite journal |last1=Gaheen |first1=Sharon |last2=Hinkal |first2=George W |last3=Morris |first3=Stephanie A |last4=Lijowski |first4=Michal |last5=Heiskanen |first5=Mervi |last6=Klemm |first6=Juli D |title=caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine |journal=Computational Science & Discovery |date=21 November 2013 |volume=6 |issue=1 |pages=014010 |doi=10.1088/1749-4699/6/1/014010}}</ref> The NanoMaterials Registry, maintained by [[RTI International]], is a curated database of nanomaterials, and includes data from caNanoLab.<ref>{{cite journal |last1=Mills |first1=Karmann |last2=Ostraat |first2=Michele L |last3=Guzan |first3=Kimberly |last4=Murry |first4=Damaris |title=The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community |journal=International Journal of Nanomedicine |date=September 2013 |pages=7 |doi=10.2147/IJN.S40722}}</ref> The eNanoMapper database, a project of the EU NanoSafety Cluster, instance is an example deployment of the database software developed in the eNanoMapper project.<ref>{{cite journal |last1=Jeliazkova |first1=Nina |last2=Chomenidis |first2=Charalampos |last3=Doganis |first3=Philip |last4=Fadeel |first4=Bengt |last5=Grafström |first5=Roland |last6=Hardy |first6=Barry |last7=Hastings |first7=Janna |last8=Hegi |first8=Markus |last9=Jeliazkov |first9=Vedrin |last10=Kochev |first10=Nikolay |last11=Kohonen |first11=Pekka |last12=Munteanu |first12=Cristian R |last13=Sarimveis |first13=Haralambos |last14=Smeets |first14=Bart |last15=Sopasakis |first15=Pantelis |last16=Tsiliki |first16=Georgia |last17=Vorgrimmler |first17=David |last18=Willighagen |first18=Egon |title=The eNanoMapper database for nanomaterial safety information |journal=Beilstein Journal of Nanotechnology |date=27 July 2015 |volume=6 |pages=1609–1634 |doi=10.3762/bjnano.6.165}}</ref> It has been since used in other settings, such as the EU Observatory for NanoMaterials (EUON).<ref>{{cite news |title=Echa launches EU nanomaterials observatory |url=https://chemicalwatch.com/56883/ |accessdate=29 March 2019 |work=Chemical Watch |date=15 June 2017 |language=en}}</ref><ref>{{cite news |title=Echa adds new databases to EU nanomaterials observatory |url=https://chemicalwatch.com/67635/echa-adds-new-databases-to-eu-nanomaterials-observatory |accessdate=29 March 2019 |work=Chemical Watch |date=12 June 2018 |language=en}}</ref> Other databases include the Center for the Environmental Implications of NanoTechnology's NanoInformatics Knowledge Commons (NIKC),<ref>{{cite web|url=https://ceint.duke.edu/|title=Center for the Environmental Implications of NanoTechnology|last=|first=|date=|website=Center for the Environmental Implications of NanoTechnology|archive-url=|archive-date=|dead-url=|access-date=}}</ref> [[PEROSH]]'s Nano Exposure & Contextual Information Database (NECID),<ref>{{Cite web|url=http://www.perosh.eu/research-projects/perosh-projects/necid/|title=Nano Exposure & Contextual Information Database (NECID)|last=|first=|date=|website=Partnership for European Research in Occupational Safety and Health (PEROSH)|language=|archive-url=|archive-date=|dead-url=|access-date=2019-05-24}}</ref> and Data and Knowledge on Nanomaterials (DaNa).<ref>{{cite web|url=https://www.nanopartikel.info/en/|title=Nanoparticles & Nanomaterials Knowledge Base|last=|first=|date=|website=Data and Knowledge on Nanomaterials|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
 
caNanoLab, developed by the U.S. [[National Cancer Institute]], focuses on nanotechnologies related to biomedicine.<ref>{{cite journal |last1=Gaheen |first1=Sharon |last2=Hinkal |first2=George W |last3=Morris |first3=Stephanie A |last4=Lijowski |first4=Michal |last5=Heiskanen |first5=Mervi |last6=Klemm |first6=Juli D |title=caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine |journal=Computational Science & Discovery |date=21 November 2013 |volume=6 |issue=1 |pages=014010 |doi=10.1088/1749-4699/6/1/014010|pmid=25364375 |pmc=4215642 |bibcode=2013CS&D....6a4010G }}</ref> The NanoMaterials Registry, maintained by [[RTI International]], is a curated database of nanomaterials, and includes data from caNanoLab.<ref>{{cite journal |last1=Mills |first1=Karmann |last2=Ostraat |first2=Michele L |last3=Guzan |first3=Kimberly |last4=Murry |first4=Damaris |title=The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community |journal=International Journal of Nanomedicine |date=September 2013 |volume=8 |issue=Suppl 1 |pages=7–13 |doi=10.2147/IJN.S40722|pmid=24098075 |pmc=3790275 |s2cid=11673414 |doi-access=free }}</ref>
 
The eNanoMapper database, a project of the EU NanoSafety Cluster, is a deployment of the database software developed in the eNanoMapper project.<ref>{{cite journal |last1=Jeliazkova |first1=Nina |last2=Chomenidis |first2=Charalampos |last3=Doganis |first3=Philip |last4=Fadeel |first4=Bengt |last5=Grafström |first5=Roland |last6=Hardy |first6=Barry |last7=Hastings |first7=Janna |last8=Hegi |first8=Markus |last9=Jeliazkov |first9=Vedrin |last10=Kochev |first10=Nikolay |last11=Kohonen |first11=Pekka |last12=Munteanu |first12=Cristian R |last13=Sarimveis |first13=Haralambos |last14=Smeets |first14=Bart |last15=Sopasakis |first15=Pantelis |last16=Tsiliki |first16=Georgia |last17=Vorgrimmler |first17=David |last18=Willighagen |first18=Egon |title=The eNanoMapper database for nanomaterial safety information |journal=Beilstein Journal of Nanotechnology |date=27 July 2015 |volume=6 |pages=1609–1634 |doi=10.3762/bjnano.6.165|pmid=26425413 |pmc=4578352 }}</ref> It has since been used in other settings, such as the EU Observatory for NanoMaterials (EUON).<ref>{{cite news |title=Echa launches EU nanomaterials observatory |url=https://chemicalwatch.com/56883/ |access-date=29 March 2019 |work=Chemical Watch |date=15 June 2017 |language=en}}</ref><ref>{{cite news |title=Echa adds new databases to EU nanomaterials observatory |url=https://chemicalwatch.com/67635/echa-adds-new-databases-to-eu-nanomaterials-observatory |access-date=29 March 2019 |work=Chemical Watch |date=12 June 2018 |language=en}}</ref>
 
Other databases include the Center for the Environmental Implications of NanoTechnology's NanoInformatics Knowledge Commons (NIKC)<ref>{{cite web|url=https://ceint.duke.edu/|title=Center for the Environmental Implications of NanoTechnology|website=Center for the Environmental Implications of NanoTechnology}}</ref> and NanoDatabank,<ref>{{Cite web|url=https://nanoinfo.org/nanodatabank/|title=NanoDatabank|website=Nanoinfo.org|access-date=2019-06-07}}</ref> [[PEROSH]]'s Nano Exposure & Contextual Information Database (NECID),<ref>{{Cite web|url=http://www.perosh.eu/research-projects/perosh-projects/necid/|title=Nano Exposure & Contextual Information Database (NECID)|website=Partnership for European Research in Occupational Safety and Health (PEROSH)|access-date=2019-05-24}}</ref> Data and Knowledge on Nanomaterials (DaNa),<ref>{{cite web|url=https://www.nanopartikel.info/en/|title=Nanoparticles & Nanomaterials Knowledge Base|website=Data and Knowledge on Nanomaterials}}</ref> and [[Springer Nature]]'s Nano database.<ref>{{cite news |title=Springer Nature expands its nanotechnology research solution with the inclusion of over 22 million patents |url=https://www.eurekalert.org/pub_releases/2019-02/s-sne022619.php |access-date=2 June 2019 |work=EurekAlert! |date=26 February 2019 |language=en}}</ref>
 
== Applications ==
Nanoinformatics has applications for improving workflows in fundamental research, manufacturing, and [[environmental health]], allowing the use of high-throughput data-driven methods to analyze broad sets of experimental results.<ref name=":1" />
 
Nanoinformatics is especially applicableuseful toin nanoparticle-based cancer diagnostics and therapeutics. They are very diverse in nature due to the combinatorially large numbers of chemical and physical modifications that can be made to them, which can cause drastic changes in their functional properties. This leads to a combinatorial complexity that far exceeds, for example, genomic data.<ref name=":0" /> Nanoinformatics can enable [[structure–activity relationship]] modelling for nanoparticle-based drugs.<ref name=":0" /> Nanoinformatics and biomolecular nanomodeling provide a route for effective cancer treatment.<ref>{{Cite journal|lastlast1=Sharma|firstfirst1=Neha|last2=Sharma|first2=Mala|last3=Sajid Jamal|first3=Qazi M.|last4=Kamal|first4=Mohammad A.|last5=Akhtar|first5=Salman|date=2019-04-25|title=Nanoinformatics and biomolecular nanomodeling: a novel move en route for effective cancer treatment|url=https://www.ncbi.nlm.nih.gov/pubmed/31025282|journal=Environmental Science and Pollution Research International|volume=27|issue=16|pages=19127–19141|doi=10.1007/s11356-019-05152-8|issn=1614-7499|pmid=31025282|s2cid=133607980}}</ref> Nanoinformatics also enables a data-driven approach to the design of materials to meet health and environmental needs.<ref>{{Cite book|title=Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management|last=Rajan|first=Krishnan|publisher=Elsevier|year=2018|isbn=978-0-12-813588-4|editor-last=Hull|editor-first=M.S.|edition=3rd|location=Oxford|pages=119-150119–150|chapter=Data-Driven Materials Design for Health and Environmental Needs|doi=10.1016/B978-0-12-813588-4.00005-1|editor-last2=Bowman|editor-first2=D.M.}}</ref>
 
=== Modeling and NanoQSAR ===
Viewed as a workflow process,<ref [1]{{Citation needed|datename=May":7" 2019}},/> nanoinformatics deconstructs experimental studies using data, [[metadata]], [[Controlled vocabulary|controlled vocabularies]] and [[Ontology (information science)|ontologies]] to populate databases so that trends, regularities and theories will be uncovered for use as predictive computational tools. Models are involved at each stage, some material (experiments, [[Certified reference materials|reference materials]], [[Modelmodel organism|model organisms]]s) and some abstract (ontology, mathematical formulae), and all intended as a representation of the target system. Models can be used in experimental design, may substitute for experiment or may simulate how a complex system changes over time.[2]<ref>{{CitationCite neededbook|datetitle=MaySpringer 2019handbook of model-based science|last1=Frigg|first1=Roman|last2=Nguyen|first2=James|publisher=Springer|year=2017|isbn=9783319305264|editor-last=Magnani|editor-first=Lorenzo|location=Cham, Switzerland|pages=49–102|chapter=Models and representation|oclc=987910975|editor-last2=Bertolotti|editor-first2=Tommaso}}</ref>
 
At present, nanoinformatics is an extension of [[bioinformatics]] due to the great opportunities for nanotechnology in medical applications, as well as to the importance of regulatory approvals to product commercialization. In these cases, the models target, their purposes, may be physico-chemical, estimating a property based on structure (quantitative structure–property relationship, QSPR); or biological, predicting biological activity based on molecular structure ([[quantitative structure–activity relationship]], QSAR) or the time-course development of a simulation ([[Physiologically based pharmacokinetic modelling|physiologically based toxicokinticstoxicokinetics]], PBTK).<ref>{{Cite book|title=Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations : [3Principles,4] Methods, and Applications in the Pharmaceutical Industry|last=Peters, Sheila Annie.|date=2011|publisher=Wiley|isbn=978-0470484067|location=Hoboken, N.J.|oclc=794619804}}</ref><ref>{{CitationCite neededjournal|last1=Fujita|first1=Toshio|last2=Winkler|first2=David A.|date=May2016-02-22|title=Understanding 2019the Roles of the "Two QSARs"|journal=Journal of Chemical Information and Modeling|volume=56|issue=2|pages=269–274|doi=10.1021/acs.jcim.5b00229|issn=1549-960X|pmid=26754147}}.</ref> Each of these has been explored for [[small molecule]] [[drug development]] with a supporting body of literature.
 
Particles differ from molecular entities, especially in having surfaces that challenge nomenclature system and QSAR/PBTK model development. For example, particles do not exhibit an [[octanol–water partition coefficient]], which acts as a motive force in QSAR/PBTK models; and they may dissolve in vivo or have band gaps.<ref>{{Cite journal|last1=Kaweeteerawat|first1=Chitrada|last2=Ivask|first2=Angela|last3=Liu|first3=Rong|last4=Zhang|first4=Haiyuan|last5=Chang|first5=Chong Hyun|last6=Low-Kam|first6=Cecile|last7=Fischer|first7=Heidi|last8=Ji|first8=Zhaoxia|last9=Pokhrel|first9=Suman|date=2015-01-20|title=Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies|journal=Environmental Science & Technology|volume=49|issue=2|pages=1105–1112|doi=10.1021/es504259s|issn=1520-5851|pmid=25563693|bibcode=2015EnST...49.1105K}}</ref> Illustrative of current QSAR and PBTK models are those of Puzyn et al.<ref>{{Cite journal|last1=Puzyn|first1=Tomasz|last2=Rasulev|first2=Bakhtiyor|last3=Gajewicz|first3=Agnieszka|last4=Hu|first4=Xiaoke|last5=Dasari|first5=Thabitha P.|last6=Michalkova|first6=Andrea|last7=Hwang|first7=Huey-Min|last8=Toropov|first8=Andrey|last9=Leszczynska|first9=Danuta|date=2011|title=Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles|journal=Nature Nanotechnology|volume=6|issue=3|pages=175–178|doi=10.1038/nnano.2011.10|issn=1748-3395|pmid=21317892|bibcode=2011NatNa...6..175P}}</ref> and Bachler et al.<ref>{{Cite journal|last1=Bachler|first1=Gerald|last2=von Goetz|first2=Natalie|last3=Hungerbühler|first3=Konrad|date=2013|title=A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles|journal=International Journal of Nanomedicine|volume=8|pages=3365–3382|doi=10.2147/IJN.S46624|issn=1178-2013|pmid=24039420|pmc=3771750 |doi-access=free }}</ref> The [[OECD]] has codified regulatory acceptance criteria,<ref>{{Cite web|url=https://www.oecd-ilibrary.org/environment/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models_9789264085442-en;jsessionid=ew6oWnz7_fLRGYZrVf4TmNcO.ip-10-240-5-180|title=Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models|date=2007|website=www.oecd-ilibrary.org|series=OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69|publisher=Organization for Co-operation and Development}}</ref> and there are guidance roadmaps<ref name=":1" /><ref name=":6" /> with supporting workshops<ref>{{Cite journal|last1=Winkler|first1=David A.|last2=Mombelli|first2=Enrico|last3=Pietroiusti|first3=Antonio|last4=Tran|first4=Lang|last5=Worth|first5=Andrew|last6=Fadeel|first6=Bengt|last7=McCall|first7=Maxine J.|date=2013-11-08|title=Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential|journal=Toxicology|volume=313|issue=1|pages=15–23|doi=10.1016/j.tox.2012.11.005|issn=1879-3185|pmid=23165187|hdl=2108/67551 |hdl-access=free}}</ref> to coordinate international efforts.
Particles differ from molecular entities, especially in having surfaces that challenge nomenclature system and QSAR/PBTK model development. For example, particles do not exhibit an octanol–water [[partition coefficient]], which acts as a motive force in QSAR/PBTK models; and they may dissolve in vivo or have band gaps. [5]{{Citation needed|date=May 2019}}. Illustrative of current QSAR and PBTK models are those of Puzyn et al, and Bachler et al. [6, 7]{{Citation needed|date=May 2019}} The [[OECD]] has codified regulatory acceptance criteria [8]{{Citation needed|date=May 2019}}, and there are guidance roadmaps [9 , 10]{{Citation needed|date=May 2019}} with supporting workshops [11]{{Citation needed|date=May 2019}} to coordinate international efforts.
 
== Communities ==
 
Communities active in nanoinformatics include the [[European Union]] [[EU NanoSafety Cluster|NanoSafety Cluster]],<ref>{{Cite web|url=https://www.nanosafetycluster.eu/|title=About the NanoSafety Cluster|last=|first=|date=|website=EU NanoSafety Cluster|archive-url=|archive-date=|dead-url=|access-date=2019-05-28}}</ref> The U.S. [[National Cancer Institute]] National Cancer Informatics Program's Nanotechnology Working Group,<ref>{{Cite web|url=https://nciphub.org/groups/nanowg|title=Nanotechnology Working Group|last=|first=|date=|website=National Cancer Informatics Program Hub|archive-url=|archive-date=|dead-url=|access-date=2019-05-28}}</ref><ref>{{Cite web|url=https://wiki.nci.nih.gov/display/ICR/Nanotechnology+Working+Group|title=Nanotechnology Working Group|last=|first=|date=|website=U.S. National Cancer Institute|archive-url=|archive-date=|dead-url=|access-date=2019-05-28}}</ref> and the US–EU Nanotechnology Communities of Research.<ref>{{Cite web|url=https://us-eu.org/|title=US–EU Nanotechnology Communities of Research|last=|first=|date=|website=US–EU Nanotechnology Communities of Research|language=en-US|archive-url=|archive-date=|dead-url=|access-date=2019-05-28}}</ref>[[File:Nanoinformatics Roles and Responsibilities.jpg|thumb|Nanoinformatics roles, responsibilities, and communication interfaces]]
Individuals who engage in nanoinformatics can be viewed as fitting across four categories of roles and responsibilities for nanoinformatics methods and data:<ref name=":4" /><ref>{{Cite journal|lastlast1=Hendren|firstfirst1=Christine Ogilvie|last2=Powers|first2=Christina M.|last3=Hoover|first3=Mark D.|last4=Harper|first4=Stacey L.|date=2015|title=The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field|url=https://www.ncbi.nlm.nih.gov/pubmed/26425427|journal=Beilstein Journal of Nanotechnology|volume=6|pages=1752–1762|doi=10.3762/bjnano.6.179|issn=2190-4286|pmid=26425427|viapmc=4578388}}</ref><ref>{{Cite journal|lastlast1=Woodall|firstfirst1=George M.|last2=Hoover|first2=Mark D.|last3=Williams|first3=Ronald|last4=Benedict|first4=Kristen|last5=Harper|first5=Martin|last6=Soo|first6=Jhy-Charm|last7=Jarabek|first7=Annie M.|last8=Stewart|first8=Michael J.|last9=Brown|first9=James S.|date=2017|title=Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges|url=https://www.ncbi.nlm.nih.gov/pubmed/29093969|journal=Atmosphere|volume=8|issue=10|pages=182|doi=10.3390/atmos8100182|issn=2073-4433|pmid=29093969|viapmc=5662140|bibcode=2017Atmos...8..182W|doi-access=free}}</ref>
 
* Customers, who need either the methods to create the data, the data itself, or both, and who specify the scientific applications and characterization methods and data needs for their intended purposes;
Line 62 ⟶ 72:
 
== History ==
One of the first mentions of nanoinformatics was in the context of handling information about nanotechnology.<ref>{{cite journal|last1=Porter|first1=Alan L.|last2=Youtie|first2=Jan|last3=Shapira|first3=Philip|last4=Schoeneck|first4=David J.|date=3 August 2007|title=Refining search terms for nanotechnology|journal=Journal of Nanoparticle Research|volume=10|issue=5|pages=715–728|doi=10.1007/s11051-007-9266-y|s2cid=56232588}}</ref>
 
An early international workshop with substantial discussion of the need for sharing all types of information on nanotechnology and nanomaterials was the First International Symposium on Occupational Health Implications of Nanomaterials held 12–14 October 2004 at the Palace Hotel, [[Buxton]], Derbyshire, UK.<ref name=":5">{{Cite book|url=https://www.hsl.gov.uk/media/394200/nanosymrep_final.pdf|title=Nanomaterials: A risk to health at Work? Report of Presentations at Plenary and Workshop Sessions and Summary of Conclusions from the First International Symposium on Occupational Health Implications of Nanomaterials held 12-14 October 2004 at the Palace Hotel, Buxton, Derbyshire, UK.|publisher=Health and Safety Laboratory|year=2004|editor-last=Mark|editor-first=David|location=Buxton, UK}}</ref> The workshop report<ref name=":5" /> included a presentation on Information Management for Nanotechnology Safety and Health<ref>{{Cite book|chapter-url=https://www.hsl.gov.uk/media/394200/nanosymrep_final.pdf|title=Nanomaterials: A risk to health at Work? Report of Presentations at Plenary and Workshop Sessions and Summary of Conclusions from the First International Symposium on Occupational Health Implications of Nanomaterials held 12-14 October 2004 at the Palace Hotel, Buxton, Derbyshire, UK|last1=Hoover|first1=Mark D.|last2=Miller|first2=Arthur L.|last3=Lowe|first3=Nathan T.|last4=Stefaniak|first4=Aleksandr B.|last5=Day|first5=Gregory L.|last6=Linch|first6=Kenneth D.|publisher=Health and Safety Laboratory|year=2004|editor-last=Mark|editor-first=David|location=Buxton, UK|pages=110|chapter=Information Management for Nanotechnology Safety and Health}}</ref> that described the development of a Nanoparticle Information Library (NIL) and noted that efforts to ensure the health and safety of nanotechnology workers and members of the public could be substantially enhanced by a coordinated approach to information management. The NIL subsequently served as an example for web-based sharing of characterization data for nanomaterials.<ref>{{Cite journal|last1=Miller|first1=Arthur L.|last2=Hoover|first2=Mark D.|last3=Mitchell|first3=David M.|last4=Stapleton|first4=Brian P.|date=2007|title=The Nanoparticle Information Library (NIL): a prototype for linking and sharing emerging data|journal=Journal of Occupational and Environmental Hygiene|volume=4|issue=12|pages=D131–134|doi=10.1080/15459620701683947|issn=1545-9624|pmid=17924276|s2cid=7518070}}</ref>
 
The National Cancer Institute prepared in 2009 a rough vision of, what was then still called, nanotechnology informatics,<ref>{{cite book|title=Nanotechnology Informatics White Paper|last1=Baker|first1=Nathan|date=February 2009|publisher=|year=|isbn=|location=|pages=|accessdate=}}</ref> outlining various aspects of what nanoinformatics should comprise. This was later followed by two roadmaps, detailing existing solutions, needs, and ideas on how the field should further develop: the ''Nanoinformatics 2020 Roadmap''<ref name=":1" /> and the ''EU US Roadmap Nanoinformatics 2030''.<ref name=":6">{{Cite web|url=https://www.nanosafetycluster.eu/Nanoinformatics2030.html|title=EU US Roadmap Nanoinformatics 2030|last=|first=|date=2018-11-15|website=EU NanoSafety Cluster|archive-url=|archive-date=|dead-url=|access-date=2019-04-24}}</ref>
The workshop report<ref name=":5" /> included a presentation on Information Management for Nanotechnology Safety and Health<ref>{{Cite book|url=https://www.hsl.gov.uk/media/394200/nanosymrep_final.pdf|title=Nanomaterials: A risk to health at Work? Report of Presentations at Plenary and Workshop Sessions and Summary of Conclusions from the First International Symposium on Occupational Health Implications of Nanomaterials held 12-14 October 2004 at the Palace Hotel, Buxton, Derbyshire, UK|last=Hoover|first=Mark D.|last2=Miller|first2=Arthur L.|last3=Lowe|first3=Nathan T.|last4=Stefaniak|first4=Aleksandr B.|last5=Day|first5=Gregory L.|last6=Linch|first6=Kenneth D.|publisher=Health and Safety Laboratory|year=2004|isbn=|editor-last=Mark|editor-first=David|location=Buxton, UK|pages=110|chapter=Information Management for Nanotechnology Safety and Health}}</ref> that described the development of a Nanoparticle Information Library (NIL) and noted that efforts to ensure the health and safety of nanotechnology workers and members of the public could be substantially enhanced by a coordinated approach to information management. The NIL subsequently served as an example for web-based sharing of characterization data for nanomaterials.<ref>{{Cite journal|last=Miller|first=Arthur L.|last2=Hoover|first2=Mark D.|last3=Mitchell|first3=David M.|last4=Stapleton|first4=Brian P.|date=2007|title=The Nanoparticle Information Library (NIL): a prototype for linking and sharing emerging data|url=https://www.ncbi.nlm.nih.gov/pubmed/17924276|journal=Journal of Occupational and Environmental Hygiene|volume=4|issue=12|pages=D131–134|doi=10.1080/15459620701683947|issn=1545-9624|pmid=17924276|via=}}</ref>
 
A 2013 workshop on nanoinformatics described current resources, community needs and the proposal of a collaborative framework for data sharing and information integration.<ref>{{Cite journal|lastlast1=Harper|firstfirst1=Stacey L.|last2=Hutchison|first2=James E.|last3=Baker|first3=Nathan|last4=Ostraat|first4=Michele|last5=Tinkle|first5=Sally|last6=Steevens|first6=Jeffrey|last7=Hoover|first7=Mark D.|last8=Adamick|first8=Jessica|last9=Rajan|first9=Krishna|date=2013|title=Nanoinformatics workshop report: Current resources, community needs, and the proposal of a collaborative framework for data sharing and information integration|url=https://www.ncbi.nlm.nih.gov/pubmed/24454543|journal=Computational Science & Discovery|volume=6|issue=1|pages=14008|doi=10.1088/1749-4699/6/1/014008|issn=1749-4699|pmid=24454543|viapmc=3895330|bibcode=2013CS&D....6a4008H}}</ref>
The National Cancer Institute prepared in 2009 a rough vision of, what was then still called, nanotechnology informatics,<ref>{{cite book|title=Nanotechnology Informatics White Paper|last1=Baker|first1=Nathan|date=February 2009|publisher=|year=|isbn=|location=|pages=|accessdate=}}</ref> outlining various aspects of what nanoinformatics should comprise. This was later followed by two roadmaps, detailing existing solutions, needs, and ideas on how the field should further develop: the ''Nanoinformatics 2020 Roadmap''<ref name=":1" /> and the ''EU US Roadmap Nanoinformatics 2030''.<ref>{{Cite web|url=https://www.nanosafetycluster.eu/Nanoinformatics2030.html|title=EU US Roadmap Nanoinformatics 2030|last=|first=|date=2018-11-15|website=EU NanoSafety Cluster|archive-url=|archive-date=|dead-url=|access-date=2019-04-24}}</ref>
 
== See also ==
A 2013 workshop on nanoinformatics described current resources, community needs and the proposal of a collaborative framework for data sharing and information integration.<ref>{{Cite journal|last=Harper|first=Stacey L.|last2=Hutchison|first2=James E.|last3=Baker|first3=Nathan|last4=Ostraat|first4=Michele|last5=Tinkle|first5=Sally|last6=Steevens|first6=Jeffrey|last7=Hoover|first7=Mark D.|last8=Adamick|first8=Jessica|last9=Rajan|first9=Krishna|date=2013|title=Nanoinformatics workshop report: Current resources, community needs, and the proposal of a collaborative framework for data sharing and information integration|url=https://www.ncbi.nlm.nih.gov/pubmed/24454543|journal=Computational Science & Discovery|volume=6|issue=1|pages=14008|doi=10.1088/1749-4699/6/1/014008|issn=1749-4699|pmid=24454543|via=}}</ref>
* [[Cheminformatics]]
* [[Materials informatics]]
 
== References ==
{{Reflist|30em}}
 
== SeeExternal alsolinks ==
* {{Scholia-inline|Q61911710|topic}}
* [[Materials informatics]]
* [[Cheminformatics]]
 
[[:Category:Information science by discipline]]
[[:Category:Nanotechnology]]