General Motors LS-based small-block engine

(Redirected from GM LS engine)

The General Motors LS-based small-block engines are a family of V8 and offshoot V6 engines designed and manufactured by the American automotive company General Motors. Introduced in 1997, the family is a continuation of the earlier first- and second-generation Chevrolet small-block engine, of which over 100 million have been produced altogether[5] and is also considered one of the most popular V8 engines ever.[6][7][8][9] Spanning three generations, a new, sixth generation is expected to enter production soon.[10][11] Various small-block V8s were and still are available as crate engines.[12][13]

General Motors LS small-block engine
An LS1 engine in a 1998 Chevrolet Camaro
Overview
ManufacturerGeneral Motors
DesignerTom Stephens[1]
Ed Koerner[1]
Production1997–present
Layout
Configuration90° V8, 90° V6
Displacement293–511 cu in (4.8–8.4 L)
Cylinder bore3.78–4.185 in (96.0–106.3 mm)
Piston stroke3.3–4.125 in (83.8–104.8 mm)
Cylinder block materialAluminum
Cast iron
Cylinder head materialAluminum
Cast iron
Valvetrain
  • 16-valve, OHV (2 valves per cyl.)
Compression ratio9.08:1–13.1:1
Combustion
Fuel systemFuel injection, carburetors[N 1]
Fuel typeGasoline, E85
Oil systemWet sump, Dry sump
Cooling systemWater-cooled
Output
Power output255–755 hp (190–563 kW)
Torque output285–715 lb⋅ft (386–969 N⋅m)
Dimensions
Dry weight402–464 lb (182–210 kg)[3][4]
Chronology
PredecessorChevrolet small-block engine (first and second generation)
SuccessorChevrolet Gemini small-block engine

The "LS" nomenclature originally came from the Regular Production Option (RPO) code LS1, assigned to the first engine in the Gen III engine series. The LS nickname has since been used to refer generally to all Gen III and IV engines,[14] but that practice can be misleading, since not all engine RPO codes in those generations begin with LS.[15] Likewise, although Gen V engines are generally referred to as "LT" small-blocks after the RPO LT1 first version, GM also used other two-letter RPO codes in the Gen V series.[16][17]

The LS1 was first fitted in the Chevrolet Corvette (C5),[18] and LS or LT engines have powered every generation of the Corvette since (with the exception of the Z06 variant of the eighth generation Corvette, which is powered by the unrelated Chevrolet Gemini small-block engine).[19] Various other General Motors automobiles have been powered by LS- and LT-based engines, including sports cars such as the Chevrolet Camaro/Pontiac Firebird and Holden Commodore, trucks such as the Chevrolet Silverado, and SUVs such as the Cadillac Escalade.[1]

A clean-sheet design, the only shared components between the Gen III engines and the first two generations of the Chevrolet small-block engine are the connecting rod bearings and valve lifters.[1] However, the Gen III and Gen IV engines were designed with modularity in mind, and several engines of the two generations share a large number of interchangeable parts.[20] Gen V engines do not share as much with the previous two, although the engine block is carried over, along with the connecting rods.[21] The serviceability and parts availability for various Gen III and Gen IV engines have made them a popular choice for engine swaps in the car enthusiast and hot rodding community, and sometimes is known colloquially as an LS swap.[22][23][24] These engines also enjoy a high degree of aftermarket support due to their popularity and affordability.[25]

Background

edit

The brainchild of Chevrolet chief engineer Ed Cole, the first generation of the Chevrolet small-block engine was first unveiled in the 1955 Chevrolet Corvette and Chevrolet Bel Air, both powered by the 265 cu in (4,343 cc) "Turbo-Fire." The 265 Turbo-Fire distinguished itself from other engines of the era such as Cadillac's 331 series of the late 1940s and early 1950s by reducing the size and weight of various components within the engine; a compact engine block combined with a light valvetrain gave the Turbo-Fire a 40 lb (18 kg) weight reduction compared to the inline-sixes (despite having two more cylinders) that initially powered the first generation of the Corvette, alongside a significant horsepower increase of 25%. This contributed to lowering the Corvette's 0–60 mph (0–97 km/h) from 11 seconds to 8.7.[26][27][28]

Nicknamed the "Mighty Mouse," the Turbo-Fire soon became popular within the hot rodding community too, along with scoring wins in stock car racing.[28] A larger version of the Turbo-Fire arrived in 1957, now bored out to 3.875 in (98.4 mm). This gave the new engine a total displacement of 283 cu in (4,638 cc); this newer version was dubbed the "Super Turbo-Fire." The Super Turbo-Fire was also the first engine offered with mechanical fuel injection. The top-of-the-line model produced 283 hp (211 kW; 287 PS), giving it a 1:1 cubic inch to horsepower ratio;[18] this lowered the Corvette's 0–60 mph (0–97 km/h) to 7.2 seconds.[27]

General Motors would produce more powerful and larger displacement iterations of the small-block, until stringent emission regulations in the late 1960s severely limited performance. The Malaise era (roughly 1973 to 1983), as it was known, saw some of the lowest horsepower figures in several muscle and or pony car engines. This included the Corvette whose power output dropped below 200 hp (149 kW; 203 PS) despite a displacement of 350 cu in (5,735 cc).[29]

1992 saw the second generation of Chevrolet small-block hit the market in that year's Chevrolet Corvette in the form of the LT1 small-block. It featured a new ignition system, reverse-flow cooling (cooling the cylinder heads first), and new engine block, but the valvetrain and engine mounts were carried over in order to maintain a degree of compatibility with the previous generation. Other modifications such as a better flowing intake manifold and cylinder heads gave the LT1 a power output of 300 hp (224 kW; 304 PS).[30][18] The second generation culminated in the LT4 small-block, which gained a minor power increase of 30 hp (22 kW; 30 PS). Other changes included a lighter valvetrain and strengthened crankshaft.[30]

The decision to stick with pushrod technology was seen as archaic at the time; such engines were seen as outdated compared to the smaller capacity (but more powerful and fuel efficient) overhead cam engines favored by European and Asian manufacturers. One of GM's domestic rivals, Ford, had announced plans to axe its small block engine from production in the early 1990s,[31] in favor of its Modular engines. Another domestic rival, Chrysler Corporation, had stopped building passenger cars with V8 engines years prior, relegating them to its trucks and SUVs. Many car enthusiasts also desired a dual overhead cam engine;[26] GM in response had developed the Northstar engines for Cadillac, but those engines were initially exclusive to that brand and not originally designed for rear-wheel-drive vehicles. Later on, Sam Winegarden, former General Motors chief engineer for small-blocks, stated that despite the stigma of the pushrod engine being "a symbol of the uncompetitiveness [sic] of the domestic industry," the decision to stick with pushrods was made on the basis that switching to overhead camshafts was unnecessary. The power requirements for the Corvette were satisfied by simply increasing engine displacement.[31] Current General Motors chief engineer for small-blocks Jake Lee also stated that switching to overhead camshafts would also increase the height of the engine by 4 in (102 mm), rendering it too tall to fit under the hood of the Corvette.[32]

Approval for the Gen III was granted in May 1992, after a seat-of-the-pants decision made by General Motors executives who went for a drive in two Corvettes—one equipped with a traditional pushrod engine and one with a newer dual overhead camshaft engine. Tom Stephens, then-executive director of General Motors Powertrains, was the man in charge of the project. Stephens had the task of designing an engine that was not only more powerful than the previous small-block iterations, but one that could also deliver better fuel economy and meet emissions standards. Work began in 1993, shortly after the release of the LT1 Gen II engine. A small team hand-picked from the Advanced Engineering department of General Motors was assembled to do much of the initial design work, with initial prototypes hitting test benches by the winter of 1993. Stephens also recruited Ed Koerner, a former NHRA record holder, to help with much of the hands-on work, while Stephens dealt with corporate.[33][34]

Design

edit

All three generations are overhead valve engines, otherwise known as pushrod engines. Overhead valve engines have the valves mounted above the cylinder head, with a pushrod and rocker arm allowing the camshaft (which is mounted inside the block) to open and close the valves. The advantages of an engine configuration like this (as opposed to an overhead camshaft engine) is that since the camshaft is located within the engine valley, a pushrod engine will be shorter in height compared an overhead camshaft engine.[35] Another advantage is that there are fewer mechanical components such as timing chains and extra camshafts, which increases reliability by keeping the engine simple.[31]

All three generations were outfitted with either aluminum or cast iron engine blocks, with all passenger car engine blocks being aluminum, whereas truck engine blocks could be either material. Every single engine was also fitted with aluminum cylinder heads,[2] except for the 1999 and 2000 model year of the LQ4, which were cast iron.[36] Other modifications to the cylinder heads included a redesign to include significantly better airflow, with evenly spaced exhaust and intake valves.[18][26] A deeper engine skirt meant that the third and following generations were slightly larger than its predecessors; the deeper skirts strengthened the block and improved rigidity. A deep engine skirt refers to an engine block which extends below the centerline position of the crankshaft within the engine.[37] Another feature across all generations was the 4.4 in (112 mm) bore spacing and pushrods, the former of which is also in use in the Chevrolet Gemini small-block engine.[38] The use of aluminum allowed for further weight reduction; the 1997 LS1 was almost 100 lb (45 kg) lighter than previous cast-iron small-block iterations.[26] GM also made extensive use of economies of scale for the LS: with the exception of the 4.8L and 7.0L engines, all variants used the same 3.622" stroke (with most of those variants using the same basic crankshaft casting), the 4.8L and 5.3L variants utilized the same block casting, and several variants used the same length connecting rod.[39]

Other modifications include long runner intake manifolds, powder-forged connecting rods and the introduction of six-bolt main bearings (as opposed to four on the previous generations). Long runner intake manifolds in the LS series increases the airflow into the cylinders at low revolutions, increasing the torque. Truck applications of the LS engine have even longer intake manifolds, being approximately 3 in (76 mm) taller than passenger car manifolds. Most engines were also fitted with hypereutectic pistons, replacing the previous cast pistons which were weaker and less thermally stable.

Powder-forging involves sintering a specific mixture of metals and non-metals which have been compressed in a forming press. The mixture is then quickly transferred into a traditional die cavity in a forging press and is pressed once then cooled. Powder-forging is also more cost-effective compared to traditional die forging, reducing the amount of tooling required to trim inconsistencies in hot-forged connecting rods.[40] Stronger than the forged steel connecting rods of the previous two generations, powder-forged connecting rods have been fitted to every LS and LT engine except for the LS7.[41]

Generation III (1997–2007)

edit
Generation III
 
An LS1 engine in a Chevrolet Corvette C5
Overview
ManufacturerGeneral Motors
Also calledVortec
Production1997–2007
Layout
Configuration90° V8
Displacement
  • 4,806 cc (293.3 cu in)
  • 5,327 cc (325.1 cu in)
  • 5,665 cc (345.7 cu in)
  • 5,967 cc (364.1 cu in)
Cylinder bore
  • 96 mm (3.78 in)
  • 99 mm (3.9 in)
  • 101.6 mm (4.00 in)
Piston stroke
  • 83 mm (3.27 in)
  • 92 mm (3.62 in)
Cylinder block material
Cylinder head material
ValvetrainOHV 2 valves per cylinder
Combustion
Fuel systemSequential multi-port fuel injection
Fuel typeGasoline
E85
Oil systemWet sump
Cooling systemWater-cooled
Dimensions
Dry weight500–580 lb (230–260 kg)[42]
Chronology
Predecessor
SuccessorGeneration IV

The Generation III small-block V8 is a "clean sheet" General Motors design produced from 1997 to 2007, which replaced the Chevrolet Generation I and Generation II engine families derived from the longstanding Chevrolet small block V8 produced between 1954 and 2003.

Like the previous two generations, the Buick and Oldsmobile small blocks, the Gen III/IV can be found in many different brands. The engine blocks were cast in aluminum for car applications, and iron for most truck applications (notable exceptions include the Chevrolet TrailBlazer SS, Chevrolet SSR, and a limited run of Chevrolet Silverado/GMC Sierra extended-cab standard-box 4WD trucks).

The architecture of the LS series makes for an extremely strong engine block with the aluminum engines being nearly as strong as the iron generation I and II engines. The LS engine also used coil-near-plug style ignition to replace the distributor setup of all previous small-block based engines.

The traditional five-bolt pentagonal cylinder head pattern was replaced with a square four-bolt design (much like the 1964–1990 Oldsmobile V8), and the pistons are of the flat-topped variety (in the LS1, LS2, LS3, LS6, LS7, LQ9, and L33), while all other variants, including the new LS9 and LQ4 truck engine, received a dished version of the GM hypereutectic piston.

The cylinder firing order was changed to 1-8-7-2-6-5-4-3[43] so that the LS series now corresponds to the firing pattern of other modern V8 engines (for example the Ford Modular V8).

3.898 in. bore blocks (1997–2005)

edit

The first of the Generation IIIs, the LS1 was the progenitor of the new architecture design that would transform the entire V8 line and influence the last of the big-blocks.

5.7L

edit

The Generation III 5.7L (LS1 and LS6) engines share little other than similar displacement, external dimensions, and rod bearings, with its predecessor (LT1). It is an all-aluminum 5,665 cc (5.7 L; 345.7 cu in) pushrod engine with a bore and stroke of 99 mm × 92 mm (3.898 in × 3.622 in).[44]

When introduced in the 1997 Corvette, the LS1 was rated at 345 hp (257 kW) at 5,600 rpm and 350 lb⋅ft (475 N⋅m) at 4,400 rpm. After improvements to the intake and exhaust manifolds in 2001, the rating improved to 350 hp (261 kW) and 365 lb⋅ft (495 N⋅m) (375 lb⋅ft (508 N⋅m) for manual-transmission Corvettes.[45][46] The LS1 was used in the Corvette from 97 to 04. It was also used in 98-02 GM F-Body (Camaro & Firebird) cars with a rating of over 305–345 hp (227–257 kW), which was rumored to be conservative. The extra horsepower was claimed to come from the intake ram-air effect available in the SS and WS6 models. In Australia, continuous modifications were made to the LS1 engine throughout its lifetime, reaching 382 hp/376 ft-lb in the HSV's VYII series, and a Callaway modified version named "C4B" was fitted to HSV GTS models producing 400 bhp (298 kW) and 376 lb⋅ft (510 N⋅m) of torque.[47]

Applications:

Year(s) Model Power Torque
1997–2004 Chevrolet Corvette C5 345–350 hp (257–261 kW) at 5600 rpm 350–375 lb⋅ft (475–508 N⋅m) at 4400 rpm
1998–2002 Pontiac Firebird Formula, Trans Am 305–345 hp (227–257 kW) at 5600 rpm 335 lb⋅ft (454 N⋅m) at 4400 rpm
1998–2002 Chevrolet Camaro Z28 305–310 hp (227–231 kW) at 5200 rpm 335–340 lb⋅ft (454–461 N⋅m) at 4400 rpm
1998–2002 Chevrolet Camaro SS 320–325 hp (239–242 kW) at 5200 rpm 345–350 lb⋅ft (468–475 N⋅m) at 4400 rpm
2004 Pontiac GTO 350 hp (261 kW) at 5200 rpm 365 lb⋅ft (495 N⋅m) at 4000 rpm
2001–2004 HSV GTO 342–382 hp (255–285 kW) at 5600 rpm 350 lb⋅ft (475 N⋅m) at 4400 rpm, 376 lb⋅ft (510 N⋅m) at 4800 rpm
1999–2005 Holden Statesman 295 hp (220 kW) at 5000 rpm, 315–328 hp (235–245 kW) at 5200 rpm 323–343 lb⋅ft (438–465 N⋅m) at 4400 rpm, 339 lb⋅ft (460 N⋅m) at 4000 rpm
2001–2005 Holden Monaro 302–328 hp (225–245 kW) at 5200 rpm, 349 hp (260 kW) at 5600 rpm 339–343 lb⋅ft (460–465 N⋅m) at 4400 rpm, 347 lb⋅ft (470 N⋅m) at 4000 rpm
 
GM LS6 engine in a Chevrolet Corvette Z06

The LS6 is a higher-output version of GM's LS1 engine and retains the same capacity. The initial 2001 LS6 produced 385 bhp (287 kW) and 385 lb⋅ft (522 N⋅m), but the engine was modified for 2002 through 2004 to produce 405 bhp (302 kW) and 400 lb⋅ft (542 N⋅m) of torque. The LS6 was originally only used in the high-performance C5 Corvette Z06 model, with the Cadillac CTS V-Series getting the 400 bhp (298 kW) engine later. The V-Series used the LS6 for two years before being replaced by the LS2 in 2006. For 2006, the Z06 replaced the LS6 with the new LS7. The LS6 shares its basic block architecture with the GM LS1 engine, but other changes were made to the design such as windows cast into the block between cylinders, improved main web strength and bay to bay breathing, an intake manifold and MAF-sensor with higher flow capacity, a camshaft with higher lift and more duration, a higher compression ratio of 10.5:1, sodium-filled exhaust valves, and a revised oiling system better suited to high lateral acceleration.[48] LS6 intake manifolds were also used on all 2001+ LS1/6 engines. The casting number, located on the top rear edge of the block, is 12561168.

The SSC Ultimate Aero TT also utilized the LS6 block, albeit with an enlarged displacement of 6.3 L (384.4 cu in) and the addition of two turbochargers.[49]

Applications:

Year(s) Model Power Torque
2001–2004 Chevrolet Corvette C5 Z06 385–405 hp (287–302 kW) at 6000 rpm 385–400 lb⋅ft (522–542 N⋅m) at 4800 rpm
2004–2005 Cadillac CTS V-Series 400 hp (298 kW) at 6000 rpm 395 lb⋅ft (536 N⋅m) at 4800 rpm
2007–2008 SSC Ultimate Aero TT (modified) 1,180 hp (880 kW) at 6950 rpm 1,106 lb⋅ft (1,500 N⋅m) at 6150 rpm

3.78 in. bore blocks (1999–2007)

edit

The 4.8L and the 5.3L are smaller truck versions of the LS1 and were designed to replace the 305 and the 350 in trucks. The 4.8L and 5.3L engines share the same Gen III LS-series engine block and heads (upper end) and therefore, most parts interchange freely between these engines and other variants in the LS family.

4.8L LR4

edit

The Vortec 4800 LR4 (VIN code "V") is a Generation III small block V8 truck engine. Displacement is 4,806 cc (4.8 L; 293.3 cu in) with a bore and stroke of 96 mm × 83 mm (3.78 in × 3.27 in). It is the smallest of the Generation III Vortec truck engines. The LR4 engines in 1999 produced 255 hp (190 kW) while the 2000 and above models made 270–285 hp (201–213 kW) and all have a torque rating between 285–295 lb⋅ft (386–400 N⋅m), depending on the model year and application. The 2005–2006 models made 285 hp (213 kW) and 295 lb⋅ft (400 N⋅m). The LR4 was manufactured at St. Catharines, Ontario, and Romulus, Michigan. It uses flat-top pistons.

Applications:

Year(s) Model Power Torque
2000–2006 Chevrolet Tahoe/GMC Yukon 270–285 hp (201–213 kW) at 5200 rpm 285–295 lb⋅ft (386–400 N⋅m) at 4000 rpm
1999–2007 Chevrolet Silverado/GMC Sierra 1500 255–285 hp (190–213 kW) at 5200 rpm 285–295 lb⋅ft (386–400 N⋅m) at 4000 rpm
2003–2007 Chevrolet Express/GMC Savana 2500/3500 275–285 hp (205–213 kW) at 5200 rpm 290–295 lb⋅ft (393–400 N⋅m) at 4000 rpm

5.3 L

edit

The Vortec 5300, or LM7/L59/LM4, is a V8 truck engine.[clarify] It is a longer-stroked by 9 mm (0.35 in) version of the Vortec 4800 and replaced the L31. L59 denoted a flexible-fuel version of the standard-fuel LM7 engine. Displacement is 5,327 cc (5.3 L; 325.1 cu in) from a bore and stroke of 96 mm × 92 mm (3.78 in × 3.62 in). Vortec 5300s were built in St. Catharines, Ontario, and Romulus, Michigan. Another engine variant, the L33, shares the same displacement, but has an aluminum block with cast-in cylinder liners, much like the LS1.

The Vortec 5300 LM7 (VIN code 8th digit "T") was introduced in 1999. The "garden variety" Generation III V8 has a cast-iron block and aluminum heads.

The 1999 LM7 engine produced 270 hp (201 kW) and 315 lb⋅ft (427 N⋅m) of torque.

The 2000–2003 engines produced 285 hp (213 kW) and 325 lb⋅ft (441 N⋅m) of torque.

The 2004–2007 engines produced 295 hp (220 kW) and 335 lb⋅ft (454 N⋅m) of torque.

The stock cam specifications at .050 lift are: 190/191 duration, .466/.457 lift, 114 LSA, 112/116 timing.

Applications:

Year(s) Model Power Torque
2002–2005 Cadillac Escalade 2WD 285–295 hp (213–220 kW) 325–335 lb⋅ft (441–454 N⋅m)
2002–2006 Chevrolet Avalanche 1500 285–295 hp (213–220 kW) 325–335 lb⋅ft (441–454 N⋅m)
2003–2007 Chevrolet Express/GMC Savana 1500/2500 285–295 hp (213–220 kW) 325–335 lb⋅ft (441–454 N⋅m)
1999–2007 Chevrolet Silverado/GMC Sierra 1500 (and 1999–2000 2500) 270–295 hp (201–220 kW) 315–335 lb⋅ft (427–454 N⋅m)
2000–2006 Chevrolet Suburban/GMC Yukon XL 1500 285–295 hp (213–220 kW) 325–335 lb⋅ft (441–454 N⋅m)
2000–2006 Chevrolet Tahoe/GMC Yukon 285–295 hp (213–220 kW) 325–335 lb⋅ft (441–454 N⋅m)

The Vortec 5300 L59 (VIN code "Z") is a flexible-fuel version of the LM7. The 2002–2003 L59 made 285 hp (213 kW) and 320 lb⋅ft (434 N⋅m), while the 2004–2007 L59 made 295 hp (220 kW) and 335 lb⋅ft (454 N⋅m).

Applications:

Year(s) Model Power Torque
2002–2006 Chevrolet Tahoe/GMC Yukon 285–295 hp (213–220 kW) 320–335 lb⋅ft (434–454 N⋅m)
2002–2006 Chevrolet Suburban/GMC Yukon XL 1500 285–295 hp (213–220 kW) 320–335 lb⋅ft (434–454 N⋅m)
2005–2006 Chevrolet Avalanche 1500 285–295 hp (213–220 kW) 320–335 lb⋅ft (434–454 N⋅m)
2002–2007 Chevrolet Silverado/GMC Sierra 1500 285–295 hp (213–220 kW) 320–335 lb⋅ft (434–454 N⋅m)

The Vortec 5300 LM4 (VIN code "P") is an aluminum block version of the LM7, and had a short production life, as did the specific vehicles in which LM4s are found. LM4s made 290 hp (216 kW) and 325 lb⋅ft (441 N⋅m). The LM7 should not be confused with the L33, described below.

Applications:

Year(s) Model Power Torque
2003–2004 Isuzu Ascender 290 hp (216 kW) at 5200 rpm 325 lb⋅ft (441 N⋅m) at 4000 rpm
2003–2004 GMC Envoy XL
2003–2004 Chevrolet SSR
2004 GMC Envoy XUV
2004 Buick Rainier
2003–2005 Chevrolet TrailBlazer EXT

The Vortec 5300 L33 (VIN code "B") is an aluminum block version of the LM7, marketed as the Vortec 5300 HO. Instead of the LM7's dished pistons, the L33 uses the 4.8L's flat top pistons. It also uses 799 cylinder heads, identical to 243 castings found on LS6s and LS2s, lacking only LS6-spec valve springs and lightweight valves. This combination raised the compression from 9.5:1 to 10.0:1. The L33 also used a unique camshaft not shared with any other engine, with the specifications at .050 duration being: 193 duration, .482 lift, 116 LSA. As a result, power increased by 15 hp (11 kW), to 310 hp (230 kW) and 335 lb⋅ft (454 N⋅m). It was available in extended-cab standard-bed 4WD pickup trucks. The SSR also came with an L33. Only 25% of 2005 Chevrolet/GMC full-size pickup trucks had an L33 engine.

Applications:

Year(s) Model Power Torque
2005–2007 Chevrolet Silverado 1500 4WD/GMC Sierra 1500 4WD 310 hp (231 kW) at 5200 rpm 335 lb⋅ft (454 N⋅m) at 4000 rpm

4.00 in. bore blocks (1999–2007)

edit

The 6.0 L is a larger version of the LS engine. 6.0 L blocks were cast of iron, designed to bridge the gap between the new small blocks and big blocks in truck applications. There were two versions of this engine: LQ4 and LQ9, the latter being more performance oriented.

6.0 L

edit

The Vortec 6000 is a V8 truck engine. Displacement is 5,967 cc (6.0 L; 364.1 cu in) from a bore and stroke of 101.6 mm × 92 mm (4.00 in × 3.62 in). It is an iron/aluminum (1999 and 2000 model year engines had cast iron heads) design and produces 300 to 345 hp (224 to 257 kW) and 360 to 380 lb⋅ft (488 to 515 N⋅m).

The Vortec 6000 LQ4 (VIN code "U") is a V8 truck engine. It produces 300 to 335 hp (224 to 250 kW) and 360 to 380 lb⋅ft (488 to 515 N⋅m). LQ4s were built in Romulus, Michigan, and Silao, Mexico.

Applications:

Year(s) Model Power Torque
1999–2007 Chevrolet Silverado/GMC Sierra 1500HD/2500/2500HD/3500 300 hp (220 kW)[convert: invalid option] at 4400 rpm 360 lb⋅ft (488 N⋅m) at 4000 rpm
2001 GMC Sierra C3 325 hp (242 kW)[convert: invalid option] at 5200 rpm 370 lb⋅ft (502 N⋅m) at 4000 rpm
2002–2007 GMC Sierra Denali
2000–2006 Chevrolet Suburban 2500/GMC Yukon XL 2500 300–320 hp (220–240 kW)[convert: invalid option] at 5200 rpm 355–375 lb⋅ft (481–508 N⋅m) at 4000 rpm
2002–2007 Hummer H2 316–325 hp (236–242 kW)[convert: invalid option] at 5200 rpm 360–365 lb⋅ft (488–495 N⋅m) at 4000 rpm
2002–2006 GMC Yukon/Yukon XL Denali and Chevrolet Suburban 1500 LTZ 325–335 hp (242–250 kW)[convert: invalid option] at 5200 rpm 370–380 lb⋅ft (502–515 N⋅m) at 4000 rpm
2003–2007 Chevrolet Express/GMC Savana 2500/3500 [convert: invalid number] at 4400 rpm 360–375 lb⋅ft (488–508 N⋅m) at 4000 rpm
2003–2008 Chevrolet W-Series/GMC W-Series/Isuzu NPR

The Vortec HO 6000 or VortecMAX (VIN code "N") is a special high-output version of the Vortec 6000 V8 truck engine originally designed for Cadillac in 2002. This engine was renamed as the VortecMAX for 2006. It features high-compression (10:1) flat-top pistons for an extra 20 hp (15 kW) and 10 lb⋅ft (14 N⋅m), bringing output to 345 hp (257 kW) and 380 lb⋅ft (515 N⋅m). Vehicles fitted with the LQ9 came exclusively with a 4.10:1 rear axle ratio. LQ9s were built only in Romulus, Michigan.

Year(s) Model Power Torque
2002–2006 Cadillac Escalade AWD 345 hp (257 kW) at 5200 rpm 380 lb⋅ft (515 N⋅m) at 4000 rpm
2005–2006 Cadillac Escalade 2WD
2002–2006 Cadillac Escalade EXT
2003–2006 Cadillac Escalade ESV
2003–2007 Chevrolet Silverado SS & H/O Edition
2005–2006 GMC Sierra Denali
2006–2007 Chevrolet Silverado Classic VortecMAX/GMC Sierra Classic VortecMAX

Generation IV (2005–2020)

edit
Generation IV
 
GM LS2 engine in a 2005 Chevrolet Corvette C6
Overview
ManufacturerGeneral Motors
Also calledVortec
Production2004–2020
Layout
Configuration90° V8
Displacement
  • 4,806 cc (293.3 cu in)
  • 5,327 cc (325.1 cu in)
  • 5,967 cc (364.1 cu in)
  • 6,162 cc (376.0 cu in)
  • 7,008 cc (427.7 cu in)
Cylinder bore
  • 96 mm (3.78 in)
  • 101.6 mm (4.00 in)
  • 103.25 mm (4.065 in)
  • 104.8 mm (4.126 in)
  • 106.3 mm (4.185 in)
Piston stroke
  • 83 mm (3.27 in)
  • 92 mm (3.62 in)
  • 101.6 mm (4.00 in)
  • 104.8 mm (4.126 in)
Cylinder block materialAluminum
Cast iron
Cylinder head materialAluminum
ValvetrainOHV 2 valves per cylinder
Combustion
SuperchargerEaton four-lobe Roots type (LS9 & LSA)
Fuel systemSequential multi-port fuel injection
Fuel typeGasoline
E85
Oil systemWet sump
Dry sump
Cooling systemWater-cooled
Chronology
PredecessorGeneration III
SuccessorGeneration V

In 2004, the Generation III was superseded by the Generation IV. This category of engines has provisions for high-displacement ranges up to 7,441 cc (7.4 L; 454.1 cu in) and power output to 776 bhp (579 kW). Based on the Generation III design, the Generation IV was designed with displacement on demand in mind, a technology that allows every other cylinder in the firing order to be deactivated. It can also accommodate variable valve timing.

A three-valve-per-cylinder design was originally slated for the LS7, which would have been a first for a GM pushrod engine, but the idea was shelved owing to design complexities and when the same two-valve configuration as the other Generation III and IV engines proved to be sufficient to meet the goals for the LS7.

4.00 in. bore blocks (2005–2020)

edit

This family of blocks was the first of the generation IV small block with the LS2 being the progenitor of this family and generation. This family of blocks has seen a wide range of applications from performance vehicles to truck usage.

6.0 L

edit

The Generation IV 6000 is a V8 engine that displaces 5,972 cc (6.0 L; 364.4 cu in) from a bore and stroke of 101.6 mm × 92 mm (4.000 in × 3.622 in). It features either a cast iron or aluminum engine block with cast aluminum heads. Certain versions feature variable cam phasing, Active Fuel Management, and flex-fuel capability.

LS2 can also refer to the 1973–1974 Super Duty 455 cu in (7.5 L) Pontiac V8 engine
LS2 can also refer to the 1985 Oldsmobile Diesel V6 engine.

The LS2 was introduced as the Corvette's new base engine for the 2005 model year. It also appeared as the standard powerplant for the 2005–2006 GTO. It produces 400 bhp (298 kW) at 6000 rpm and 400 lb⋅ft (542 N⋅m) at 4400 rpm from a slightly larger displacement of 5,967 cc (6.0 L; 364.1 cu in). It is similar to the high-performance LS6, but with improved torque throughout the rpm range. The LS2 uses the "243" casting heads used on the LS6 (although without the sodium-filled valves), a smaller camshaft, and an additional 18 cubic inches (290 cc). The compression of the LS2 was also raised to 10.9:1 compared to the LS1s' 10.25:1 and the LS6s' 10.5:1. The LS2 in the E-series HSVs are modified in Australia to produce 412 bhp (307 kW) and 412 lb⋅ft (559 N⋅m) of torque. The LS2 in the Chevrolet Trailblazer SS and the Saab 9-7X Aero are rated at 395 bhp (295 kW) (2006–2007) or 390 bhp (291 kW) (2008–2009) and 400 lb⋅ft (542 N⋅m) of torque due to a different (sometimes referred to as a "truck") intake manifold that produces more torque at lower rpms.

The LS2 is also used as the basis of the NASCAR Specification Engine that is used as an optional engine in NASCAR's Camping World Series East and West divisions starting in 2006, and starting in 2010 may also be used on tracks shorter than two kilometers (1.25 miles) in the Camping World Truck Series.[50]

A version of the NASCAR V8 cylinder block cast in compacted graphite iron by Grainger & Worrall won the UK's Casting of the Year Award 2010.[51]

Applications:

The L76 is derived from the LS2, and like the LS2 it features an aluminum engine block. However, the L76 does feature Active fuel management (AFM). While the displacement on demand technology was disabled on Holdens, this feature is enabled on the 2008 Pontiac G8 GT and subsequently refitted in the 2009 model Holdens with AFM enabled, but only on models fitted with the 6L80 Automatic Transmission. The engine also meets Euro III emissions requirements. Output is 348 bhp (260 kW) at 5600 rpm and 376 lb⋅ft (510 N⋅m) at 4400 rpm for the Holden variant, and 361 bhp (269 kW) and 385 lb⋅ft (522 N⋅m) for the G8 GT.[53] The Vortec 6000 or new VortecMAX version is based on the Holden L76 engine, and features variable cam phasing, along with Active Fuel Management. It can be considered the replacement for the Generation III LQ9 engine. It produces 367 hp (274 kW) at 5400 rpm and 375 lb⋅ft (508 N⋅m) at 4400 rpm. Production of the truck-spec L76 started in late 2006, and it was only available with the new body style Silverado and Sierra, as well as the then-new Suburban. The final year for the truck-spec L76 was 2009 for all three applications; it was replaced by the 6.2L L9H engine for MY 2010 in the pickup trucks.

Applications:

The L98 is a slightly modified version of the L76, specific to Holden vehicles. Since Holden did not use the displacement on demand technology of the L76, some redundant hardware was removed to form the L98. Power increased to 270 kW (362 bhp) at 5700 rpm and 530 N⋅m (391 lb⋅ft) at 4400 rpm.

Applications:

L77 can also refer to the 455 Oldsmobile large crank journal engine.

L77 engines were released in the Holden Commodore Series II VE range in both manual and automatic transmissions, along with the Chevrolet Caprice PPV (police car). The L77 differs from the L76 with its inclusion of Flex-fuel capability, allowing it to run on E85 fuel. The L77 is rated at 270 kW (362 hp) and 530 N⋅m (391 lb⋅ft) of torque in the manual Commodore SS and SS-V, in automatic Commodores it is rated at 260 kW (349 hp) and 517 N⋅m (381 lb⋅ft) of torque.

Applications:

The LY6 is a Generation IV small-block V8 truck engine with a cast-iron block. It shares the same bore and stroke as its LQ4 predecessor. Like other Gen IV engines, it features variable valve timing. It generated 361 hp (269 kW) at 5,600 rpm and 385 lb⋅ft (522 N⋅m) of torque at 4,400 rpm using "regular" gas, or ~87 octane. Redline is 6,000 rpm and the compression ratio is 9.6:1. This engine uses L92 / LS3 style rectangle port cylinder heads, though without the sodium-filled exhaust valves of the LS3.

Applications:

The L96 is essentially identical to its predecessor, the LY6. The primary difference is that the L96 is flex-fuel capable, while the LY6 is not.

Applications:

The LFA (VIN code "5") is a Generation IV small-block V8 truck engine. The LFA variant is used in the GM's "two-mode" hybrid GMT900 trucks and SUVs, and is an all-aluminum design. It has a 10.8:1 compression ratio and produces 332 hp (248 kW) at 5100 rpm and 367 lb⋅ft (498 N⋅m) at 4100 rpm.

In 2008, this engine was selected by Wards as one of the 10 best engines in any regular production vehicle.

Applications:

The LZ1 is almost entirely based on its predecessor, the LFA, but with some revisions, such as including up-integrated electronic throttle control, long-life spark plugs, GM's Oil Life System, Active Fuel Management, and variable valve timing.[54] It has the same compression ratio and power/torque ratings as its predecessor.

Applications:

3.78 in. bore blocks (2005–2017)

edit

This family of blocks is just an updated version of its Generation III predecessor with Generation IV updates and capabilities. Applications of this family were mainly for trucks but did see some mild usage (with some modifications) in front-wheel-drive cars.

4.8 L

edit

The Vortec 4800 LY2 (VIN code "C") is a Generation IV small-block V8 truck engine. Like its LR4 predecessor, it gets its displacement from a bore and stroke of 96 mm × 83 mm (3.78 in × 3.27 in). The smallest member of the Generation IV engine family is unique in that it is the only member used in trucks that does not feature variable valve timing. It has a cast-iron block. Power output is 260–295 hp (194–220 kW) and torque is 295–305 lb⋅ft (400–414 N⋅m).

Applications:

The Vortec 4800 L20 makes more power and features variable valve timing. The system adjusts both intake and exhaust timing but does not come with Active Fuel Management. The L20 has a cast-iron block and power output is 260–302 hp (194–225 kW) while torque is 295–305 lb⋅ft (400–414 N⋅m). The Vortec 4800 base engines were dropped from the Chevrolet Tahoe and GMC Yukon in favor of the 5300 with Active Fuel Management.

Applications:

5.3 L

edit

The Generation IV 5.3L engines share all the improvements and refinements found in other Generation IV engines. Eight versions of the Gen IV 5.3L engine were produced: three iron blocks (LY5, LMG, and LMF) and five aluminum blocks (LH6, LH8, LH9, LC9, and LS4). All versions featured Active Fuel Management except for the LH8, LH9, and LMF.

The Vortec 5300 LH6 (VIN code "M") with Active Fuel Management replaced the LM4 for 2005, and was the first of the Generation IV small-block V8 truck engines to go into production. The LH6 produced 300 to 315 hp (224 to 235 kW) and 330 to 338 lb⋅ft (447 to 458 N⋅m). It is the aluminum block counterpart to the LY5.

Applications:

LS4 can also refer to a 454 cu in (7.4 L) Chevrolet Big-Block engine of the 1970s
 
5.3 L LS4 V8 in a 2006 Chevrolet Impala SS

The LS4 is a 5,327 cc (5.3 L; 325.1 cu in) version of the Generation IV block. Though it has the same displacement as the Vortec 5300 LY5, it features an aluminum block instead of iron, and uses the same cylinder head casting as the Generation III LS6 engine. The LS4 is adapted for transverse front-wheel drive applications, with a bellhousing bolt pattern that differs from the rear-wheel-drive blocks (so as to mate with the 4T65E).

According to GM, "the crankshaft is shortened 13–3 mm (0.51–0.12 in) at the flywheel end and 10 mm (0.39 in) at the accessory drive end – to reduce the length of the engine compared to the 6.0 L. All accessories are driven by a single serpentine belt to save space. The water pump is mounted remotely with an elongated pump manifold that connects it to the coolant passages. Revised oil pan baffles, or windage trays, are incorporated into the LS4 to ensure that the oil sump stays loaded during high-g cornering."[55] Active Fuel Management is also used. Output of this version is 303 hp (226 kW) (300 hp on LaCrosse Super) and 323 lb⋅ft (438 N⋅m).

Applications:

Introduced in 2007, the Vortec 5300 LY5 (VIN code "J") is the replacement for the LM7 Generation III engine. For SUV applications, it is rated at 320 hp (239 kW) and 340 lb⋅ft (461 N⋅m) of torque, while for pickup truck applications, it is rated at 315–320 hp (235–239 kW) at 5200 rpm and 335–340 lb⋅ft (454–461 N⋅m) at 4000 rpm.

Applications:

The Vortec 5300 LC9 (VIN code "3" or "7") is the aluminum block flex-fuel version of the LH6, and is found in 4WD models. SUV applications are rated at 320 hp (239 kW) at 5400 rpm and 335 lb⋅ft (454 N⋅m) at 4000 rpm.[56] Pickup truck applications are rated at 315 hp (235 kW) at 5300 rpm and 335 lb⋅ft (454 N⋅m) at 4000 rpm.[56] Variable valve timing was added for the 2010 model year.

Applications:

  • 2007–2013 Chevrolet Avalanche
  • 2007–2013 Chevrolet Silverado 1500
  • 2007–2014 Chevrolet Suburban 12 ton
  • 2007–2013 GMC Sierra 1500
  • 2007–2014 GMC Yukon XL 12 ton

The Vortec 5300 LMG (VIN code "0") is the flexible-fuel version of the LY5. Power and torque ratings for SUV and pickup truck applications are the same as each application's LY5 rating. Variable valve timing was added for the 2010 model year. Active Fuel Management is standard on this model for fuel economy purposes.[57]

Applications:

The LH8 was introduced in 2008 as the V8 option for the Hummer H3. It was the simplest, most basic 5.3L V8 of its family, lacking any special technologies. Also known as the Vortec 5300, the LH8 was available in the H3 and GM mid-size pickups through 2009.

The LH8 is a variant of the 5.3L Gen IV small-block V8 modified to fit in the engine bay of the GMT345 SUV and GMT355 trucks. It produces 300 hp (224 kW) at 5200 rpm and 320 lb⋅ft (434 N⋅m) at 4000 rpm. It has a displacement of 5,327 cc (5.3 L; 325.1 cu in)[58] and a compression ratio of 9.9:1.[59]

Applications:

In 2010, the LH8 was replaced by the LH9. The LH9 was upgraded with Variable Valve Timing (VVT) and flex-fuel capability (but not Active Fuel Management). The Vortec 5300 LH9 produces 300 hp (224 kW) at 5200 rpm and 320 lb⋅ft (434 N⋅m) at 4000 rpm. It has a displacement of 5,327 cc (5.3 L; 325.1 cu in).[58] The compression ratio was 9.9:1 for 2010, but was reduced to 9.7:1 for the remaining two years of production.[60][61][62]

Applications:

Introduced in 2008, the LMF is a low-tech LY5, used in the lower-volume half-ton vans that still used the 4L60-E 4-speed automatic, lacking Active Fuel Management. The LMF features variable valve timing.[63]

Applications:

4.125 in. bore blocks (2006–2017)

edit

Inspired by the LS1.R in size and performance goals, this family of blocks was designed for race-oriented performance. The only engine with this bore size that was used in a production vehicle is the LS7 with the LSX being only for aftermarket use. One unique feature of this family is that the cylinders are siamesed, no water passages between neighboring cylinders.[64] This was done to increase both bore size and block strength.

7.0 L

edit

LS7 can also refer to a 454 over-the-counter 460+ hp high compression engine Chevrolet Big-Block engine of the 1970s
 
7.0L LS7 engine in a 2006 Chevrolet Corvette Z06

The LS7 is a 7,011 cc (7.0 L; 427.8 cu in) engine, based on the Gen IV architecture. The block is changed, with sleeved cylinders in an aluminum block with a larger bore of 4.125 in (104.8 mm) and longer stroke of 4 in (101.6 mm) than the LS2. The small-block's 4.4 in (110 mm) bore spacing is retained, requiring pressed-in cylinder liners. The crankshaft and main bearing caps are forged steel for durability, the connecting rods are forged titanium, and the pistons are hypereutectic. The two-valve arrangement is retained, though the titanium intake valves by Del West have grown to 2.2 in (56 mm) and sodium-filled exhaust valves are up to 1.61 in (41 mm).

Peak output is 505 bhp (512 PS; 377 kW) at 6300 rpm (72.0 BHP/L) and 470 lb⋅ft (637 N⋅m) of torque at 4800 rpm with a 7000 rpm redline.[65] During GM's reliability testing of this engine in its prototype phase, the LS7 was remarked to have been repeatedly tested to be 8000 rpm capable, although power was not recorded at that rpm level, because of the constraints of the camshaft's hydraulic lifters and the intake manifold ability to flow required air at that engine speed.

The LS7 was hand-built by the General Motors Performance Build Center in Wixom, Michigan. Most of these engines are installed in the Z06, some are also sold to individuals by GM as a crate engine. The 2014 and 2015 Z28 were the only Camaros to receive the 427 LS7. As of early 2022, the LS7 is no longer being supplied as a crate engine, with Chevrolet intending to fulfill all current orders until inventory is depleted.[66]

After an extensive engineering process over several years, Holden Special Vehicles fitted the LS7 to a special edition model: the W427. The HSV-tuned engine produced 375 kW (510 PS; 503 bhp) at 6500 rpm and 640 N⋅m (472 lb⋅ft) at 5000 rpm of torque.[67] It was unveiled at the Melbourne International Motor Show on February 29, 2008,[68] and went on sale in August 2008. The first Australian car to be fitted with this engine, however, was the CSV GTS of 2007, which was claimed to have a power output of 400 kW (536 hp) and 600 N⋅m (443 lb⋅ft).[69]

Applications:

LS427
edit

The LS427 is a 7,011 cc (7.0 L; 427.8 cu in) engine. Based on the LS7 engine, the LS427 replaces the dry-sump oiling system with a wet-sump system and includes a higher-lift camshaft. This engine was only available as a crate option and did not appear in any production vehicles. It was introduced in June 2020 and discontinued in January 2022 along with the LS7.

Peak output is 570 bhp (578 PS; 425 kW) and 540 lb⋅ft (732 N⋅m) of torque with a 7000 rpm redline.[71]

4.06 in. bore blocks (2007–2017)

edit

This family was designed as a replacement for the LS2 but enlarged to better accommodate variable valve timing and Active Fuel Management while still generating decent performance. This family of engines has mainly seen duty in performance cars and high-end SUVs.

6.2 L

edit

L92 / L9H / L94
edit

The L92, also known as the Vortec 6200, displaces 6,162 cc (6.2 L; 376.0 cu in), and first debuted in the 2007 Cadillac Escalade. It is an all-aluminum design which, while still a pushrod engine, boasts variable valve timing. The system adjusts both intake and exhaust timing between two settings. This engine produces 403 hp (301 kW) and 417 lb⋅ft (565 N⋅m) in the GMC Yukon Denali/XL Denali, GMC Sierra Denali, Hummer H2, and briefly in the Chevrolet Tahoe LTZ (MY 2008.5 – MY 2009) and rated at 403 hp (301 kW) and 415 lb⋅ft (563 N⋅m). Starting in 2009, it was also available in the Chevrolet Silverado and GMC Sierra, as the L9H, with power ratings of 403 hp (301 kW) and 417 lb⋅ft (565 N⋅m).

Engines built prior to April 1, 2006, contained AFM hardware; however, the mode was not enabled in the PCM, and thus the system was not functional. Engines built after this date also lacked any AFM hardware, and instead used a valley cover plate similar to the L20, until the debut of the L94 variants mentioned below.

The 2009 L92 was modified with flex-fuel capability, becoming the L9H, but still had no AFM hardware. In 2010, the L9H was further modified with Active Fuel Management, becoming the L94 (in the Cadillac Escalade and GMC Yukon Denali).

Applications:

LS3 can also refer to a 402 cu in (6.6 L) Chevrolet Big-Block engine of the 1970s.
 
GM LS3 engine in a 2008 Chevrolet Corvette

The LS3 was introduced as the Corvette's new base engine for the 2008 model year. It produces 430 bhp (321 kW; 436 PS) at 5900 rpm and 424 lb⋅ft (575 N⋅m) at 4600 rpm without the optional Corvette exhaust and is SAE certified. The block is an updated version of the LS2 casting featuring a larger bore of 103.25 mm (4.065 in) creating a displacement of 6,162 cc (6.2 L; 376.0 cu in). It also features higher flowing cylinder heads sourced from the L92, a more aggressive camshaft with 0.551 in (14 mm) lift, a 10.7:1 compression ratio, a revised valvetrain with 0.236 in (6 mm) offset intake rocker arms, a high-flow intake manifold, and 47 lb (21 kg)/hour fuel injectors from the LS7 engine.

The L76/L92/LS3 cylinder heads use 2.165 in (55 mm) intake valves, and 1.59 in (40 mm) exhaust valves. Improved manufacturing efficiency makes these heads cheaper to produce than the outgoing LS6 heads, significantly undercutting the price of aftermarket heads. The large valves, however, limit maximum rpm – 6000 in the L76 (with AFM), and 6600 in the LS3 (with hollow stem valves).

In addition to the above, a dual-mode exhaust package with a bypass on acceleration was available on C6 Corvettes. The dual-mode exhaust uses vacuum-actuated outlet valves, which control engine noise during low-load operation, but open for maximum performance during high-load operation. The system is similar to the C6 Z06, but uses a 2.5 in (64 mm) diameter exhaust compared to the Z06's 3 in (76.2 mm). Power is boosted to 436 hp (325 kW) and 428 lb⋅ft (580 N⋅m) with this option. A similar system was optional on later-model fifth-generation Chevrolet Camaros and standard on the 2016–2017 Chevrolet SS, but no horsepower or torque increases were advertised on those vehicles.

LS3 engines found in manual transmission-equipped C6 Corvette Grand Sport models also received a dry sump oiling system similar to the one fitted to LS7-equipped Corvettes.

From April 2008, Australian performance car manufacturer HSV adopted the LS3 as its standard V8 throughout the range, replacing the 6.0-liter LS2. The LS3 received modifications for its application to HSV E Series models, producing 425 bhp (317 kW). The LS3 engine in the E Series II GTS (released September 2009) was upgraded to produce 436 bhp (325 kW). All HSV MY12.5 excluding the base Maloo and Clubsport variants have been upgraded to produce 436 bhp (325 kW).

From September 2015, Holden introduced the LS3 in all V8 models of the VF II Commodore and WN II Caprice-V, replacing the 6.0L L77.

Applications:

The L99 is derived from the LS3 with reduced output but adds Active Fuel Management (formerly called Displacement on Demand) and variable valve timing, which allows it to run on only four cylinders during light load conditions.

Applications:

The Gen IV LS9 is a supercharged 6,162 cc (6.2 L; 376.0 cu in) engine, based on the LS3; the LS7 block was not used because of the higher cylinder pressures created by the supercharger requiring the thicker cylinder walls of the LS3. It has a bore and stroke of 103.25 mm × 92 mm (4.065 in × 3.622 in). It is equipped with an Eaton four-lobe Roots type supercharger and has a compression ratio of 9.1:1. Power output is rated 638 bhp (647 PS; 476 kW) at 6500 rpm and 604 lb⋅ft (819 N⋅m) at 3800 rpm of torque.[72] Note: GM previously used the LS9 RPO code on 1969 and later Chevrolet trucks (both 2WD and 4WD) including Blazers, Jimmys, and Suburbans, as well as car carriers. The original LS9 was a 350 cu in (5.7 L) V8, developing 160 hp (119 kW) and 245 lb⋅ft (332 N⋅m) of torque. In 2017, Holden Special Vehicles used a modified version of the LS9 in their GTSR W1, the last-ever Holden Commodore based vehicle produced in Australia.

Applications:

The supercharged 6.2L LSA is similar to the LS9 and debuted in the 2009 CTS-V. The LSA has been SAE certified at 556 bhp (415 kW) at 6100 rpm and 551 lb⋅ft (747 N⋅m) at 3800 rpm. GM labeled it "the most powerful ever offered in Cadillac's nearly 106-year history." The LSA features a smaller 1.9 L (120 cu in) supercharger rather than the 2.3 L (140 cu in) variant of the LS9. Other differences include a slightly lower 9.0:1 compression ratio, single-unit heat exchanger, and cast pistons.

A 580 bhp (433 kW) and 556 lb⋅ft (754 N⋅m) version of the LSA engine is used in the 2012 Camaro ZL1. On May 15, 2013, Holden Special Vehicles announced that this version of the LSA engine would also be used in the GEN-F GTS.

Applications:

Generation V (2013–present)

edit
Generation V
 
The L86 in the 2015 GMC Yukon Denali
Overview
ManufacturerGeneral Motors
Also calledEcoTec3
Production2013–present
Layout
Configuration90° V6
90° V8
Displacement
  • 4,301 cc (262.5 cu in)
  • 5,328 cc (325.1 cu in)
  • 6,162 cc (376.0 cu in)
  • 6,564 cc (400.6 cu in)
Cylinder bore
  • 99.6 mm (3.92 in)
  • 96 mm (3.78 in)
  • 103.25 mm (4.065 in)
Piston stroke
  • 92 mm (3.622 in)
  • 98 mm (3.858 in) (L8T only)
Cylinder block materialAluminum
Cast iron (L8T only)
Cylinder head materialAluminum
ValvetrainOHV 2 valves per cylinder
Compression ratio
  • 10.0:1
  • 11.0:1
  • 11.5:1
Combustion
SuperchargerEaton TVS supercharger (LT4 & LT5)
Fuel systemDirect injection
Fuel typeGasoline
E85
Oil systemWet sump
Cooling systemWater-cooled
Chronology
PredecessorGeneration IV

In 2007, WardsAuto.com reported that the LS3 (used in the 2008 Chevrolet Corvette) and Vortec 6000 LFA (used in the 2008 Chevrolet Tahoe Hybrid) engines would be the final two designs in the Generation IV small-block engine family, and the future designs would be part of the Generation V engine family. An experimental engine was built based on the L92 engine from the Cadillac Escalade, GMC Yukon Denali, and Hummer H2, and reported to generate 450 bhp (336 kW) on gasoline via direct fuel injection, increased compression ratio to 11.5:1, and a modified engine controller.[73] The first Gen V LT engine was the LT1, announced in 2012 as the initial powerplant for the redesigned Corvette C7, succeeding the LS engine family. The new logo formally adopts the Small Block name for the engines.

The fifth generation of the iconic GM small block engine family features the same cam-in-block architecture and 4.4 in (110 mm) bore centers (the distance between the centers of each cylinder) that were born with the original small block in 1954. Structurally, the Gen-V small-block is similar to the Gen III/IV engines, including a deep-skirt cylinder block. Refinements and new or revised components are used throughout, including a revised cooling system and all-new cylinder heads. Because the positions of the intake and exhaust valves are flipped from where they would be in an LS engine, as well as the need for an addition to the camshaft to drive the high-pressure fuel pump for the direct fuel injection, few parts are interchangeable with the Gen III/IV engines.

All Gen V engines use aluminum blocks with aluminum cylinder heads, and include direct injection, piston cooling jets, active fuel management, variable displacement oil pump, and continuously variable valve timing. (The L8T is an exception; see below for details.) However, they all retain their ancestors' two-valve pushrod valvetrain and 4.4 inch bore spacing.

4.06 in. bore blocks (2014–present)

edit

This family of blocks was the first of the Generation V small block with the LT1 being the progenitor of this family and generation. This family of blocks has seen a wide range of applications from performance vehicles to truck usage.

6.2 L

edit

 
The 6.2L LT1 engine in a 2022 Chevrolet Camaro LT1

The 6.2 L; 376.0 cu in (6,162 cc) LT1 engine debuted in the 2014 Chevrolet Corvette Stingray and is the first Generation V small block engine. Like its LS3 predecessor, it gets its displacement from a bore and stroke of 103.25 mm × 92 mm (4.065 in × 3.622 in) with a compression ratio of 11.5 to 1.

Applications:

Year(s) Model Power Torque
2014–2019 Chevrolet Corvette C7 455 hp (339 kW) at 6000 rpm 460 lb⋅ft (624 N⋅m) at 4600 rpm
460 hp (343 kW) at 6000 rpm (performance exhaust) 465 lb⋅ft (630 N⋅m) at 4600 rpm (performance exhaust)
2016–2024 Chevrolet Camaro SS 455 hp (339 kW) at 6000 rpm 455 lb⋅ft (617 N⋅m) at 4400 rpm
2020–2024 Chevrolet Camaro LT1 455 hp (339 kW) at 6000 rpm 455 lb⋅ft (617 N⋅m) at 4400 rpm

The LT2 engine debuted in the 2020 Corvette Stingray as the successor to the LT1. It was designed specifically with mid-engine placement and dry-sump lubrication in mind.

Applications:

Year(s) Model Power Torque
2020–present Chevrolet Corvette C8 490 hp (365 kW) at 6450 rpm 465 lb⋅ft (630 N⋅m) at 5150 rpm
495 hp (369 kW) at 6450 rpm (performance exhaust) 470 lb⋅ft (637 N⋅m) at 5150 rpm (performance exhaust)

L86/L87
edit

The 6.2 L; 376.0 cu in (6,162 cc) EcoTec3 is a Generation V small-block V8 truck engine (VIN code "J"). The L86 is an LT1 engine modified for truck use with a compression ratio of 11.5 to 1. In 2019, GM introduced the L87 as the successor to the L86. Power and torque remain the same, but whereas the L86's "Active Fuel Management" alternates between V4 and V8 modes, the L87's "Dynamic Fuel Management" can alternate between any of 17 different firing orders which vary both how many and which cylinders are actually firing based on demand calculated every 125 milliseconds.

Applications:

Year(s) Model Power Torque
2014–present Chevrolet Silverado/GMC Sierra 420 hp (313 kW) at 5600 rpm 460 lb⋅ft (624 N⋅m) at 4100 rpm
2015–present Chevrolet Tahoe/GMC Yukon
Chevrolet Suburban/GMC Yukon XL
Cadillac Escalade/Escalade ESV

The 6.2 L; 376.0 cu in (6,162 cc) LT4 engine builds on the design strengths of the previous LS9 supercharged engine used in the sixth-generation Corvette ZR1 and leverages the technologies introduced on the seventh-generation Corvette Stingray, including direct injection, cylinder deactivation, and continuously variable valve timing, to take Corvette performance to an all-new level. The LT4 engine is based on the same Gen 5 small block foundation as the Corvette Stingray's LT1 6.2L naturally aspirated engine, incorporating several unique features designed to support its higher output and the greater cylinder pressures created by forced induction, including: Rotocast A356T6 aluminum cylinder heads that are stronger and handle heat better than conventional aluminum heads, lightweight titanium intake valves, forged powder metal steel connecting rods, 10.0:1 compression ratio, enhanced performance and efficiency enabled by direct injection, forged aluminum pistons with unique, stronger structure to ensure strength under high cylinder pressures, stainless steel exhaust manifolds for structure at higher temperatures, aluminum balancer for reduced mass, and standard dry-sump oiling system with a dual-pressure-control oil pump.[74] The engine uses a 1.7 L (103.7 cu in) Eaton TVS Supercharger. Although smaller than the previous 2.3 L (140.4 cu in) supercharger used on the sixth-generation ZR1, it spins to 5000 rpm faster thus generating boost quicker while making only slightly less total boost than the LS9 engine.[75] The Escalade-V variant uses a 2.7 L (164.8 cu in) Eaton TVS supercharger. This engine is also used by Scuderia Cameron Glickenhaus for their SCG 004S.[76]

Applications:

Year(s) Model Power Torque
2015–2019 Chevrolet Corvette Z06 650 hp (485 kW) at 6400 rpm 650 lb⋅ft (881 N⋅m) at 3600 rpm
2016–2019 Cadillac CTS-V 640 hp (477 kW) at 6400 rpm 630 lb⋅ft (854 N⋅m) at 3600 rpm
2017–2024 Chevrolet Camaro ZL1 650 hp (485 kW) at 6400 rpm 650 lb⋅ft (881 N⋅m) at 3600 rpm
2022–present Cadillac CT5-V Blackwing 668 hp (498 kW) 659 lb⋅ft (893 N⋅m)
2023–present Cadillac Escalade-V 682 hp (509 kW) 653 lb⋅ft (885 N⋅m)

The 6.2 L; 376.0 cu in (6,162 cc) LT5 engine debuted in the seventh-generation Corvette ZR1 at the 2017 Dubai Motor Show. It draws its name from the 5.7 L LT5 from the C4, manufactured from 1989–1993. The original LT5 is rarely known as a Chevy small block V8, as it was designed by Lotus, built by Mercury Marine, and implements a DOHC 32-valve multi-port injection system, instead of the 16-valve push-rod design. The new (and unrelated) LT5, however, has increased its displacement from 5.7 to 6.2L (350 to 376 cu in), retains the Gen V OHV valvetrain, and is topped with a 2.6 L (158.7 cu in) Eaton TVS supercharger and an improved intercooler. It simultaneously couples the standard direct injection system found on Gen 5 engines with port fuel injection, specifically to satisfy upper-RPM fuel demands. Power output is 755 hp (765 PS; 563 kW) at 6400 rpm and 715 lb⋅ft (969 N⋅m) of torque at 3600 rpm.

Applications:

Year(s) Model Power Torque
2019 Chevrolet Corvette ZR1 755 hp (563 kW) at 6400 rpm 715 lb⋅ft (969 N⋅m) at 3600 rpm

6.6 L

edit

The L8T is the first (and so far, only) iron block member of the Gen V family, and is the successor to the 6.0L Gen IV L96. It shares its 103.25 mm (4.065 in) bore with other 6.2L V8s such as the L86, but with a longer stroke of 98 mm (3.9 in) to displace 6.564 L (400.6 cu in).[77] It is rated for 401 hp (299 kW) at 5,200 rpm and 464 lb⋅ft (629 N⋅m) of torque at 4,000 rpm. The compression ratio is 10.8:1. The longer stroke yields little additional peak torque output compared to the L86, but only requires 87 Octane. The stroke is also shorter than the LS7's 101.6 mm (4.00 in), to optimize rod ratio for reliability.

Rather than allow a "high-strung" small-block to fail the heavy-duty truck market, the iron block, lack of both stop-start and cylinder deactivation, longer stroke and rod ratio, lower compression, lesser 87 Octane requirement, greater displacement, forged connecting rods, and forged crankshaft with central counterweights all suggest that the L8T was designed specifically to assuage the heavy-duty truck market's concerns.[78][79]

Applications:

Year(s) Model Power Torque
2020–present Chevrolet Silverado HD/GMC Sierra HD 401 hp (299 kW) at 5200 rpm 464 lb⋅ft (629 N⋅m) at 4000 rpm
2021–present Chevrolet Express/GMC Savana 2500/3500/4500

3.78 in. bore blocks (2014–present)

edit

Unlike the previous Generation III/IV 3.78 in (96 mm) bore block families, there is no 4.8 L (290 cu in) displacement variant (having been 'replaced' by GM's 5th Generation LT V8-based V6, the 4.3 L (260 cu in) LV3).

5.3 L

edit

Dubbed EcoTec3, the 5.328 L (325.1 cu in) is a Generation V small block V8 truck engine (VIN code "C"). Like its Vortec 5300 Generation IV predecessor, it gets its displacement from a bore and stroke of 96 mm × 92 mm (3.78 in × 3.62 in) with a compression ratio of 11.0 to 1.

Applications:

Year(s) Model Power Torque
2014–2019 Chevrolet Silverado/GMC Sierra 1500 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpm E85 416 lb⋅ft (564 N⋅m) at 4000 rpm E85
2015–2020 Chevrolet Tahoe/GMC Yukon 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpm E85 416 lb⋅ft (564 N⋅m) at 4000 rpm E85
2015–2020 Chevrolet Suburban/GMC Yukon XL 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpm E85 416 lb⋅ft (564 N⋅m) at 4000 rpm E85

The L8B is an eAssist mild hybrid version of the L83 featuring a 0.45-kWh lithium ion battery pack. This setup can improve fuel efficiency by about 13%. This adds about 100 lb (45 kg) to the total weight of the truck but provides an additional 13 hp (10 kW) and 44 lb⋅ft (60 N⋅m).[80][81]

Applications:

Year(s) Model Power Torque
2016–2018 Chevrolet Silverado/GMC Sierra 1500 Hybrid 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm

The L82 is one of two 5.3L V8s available in the fourth-generation Chevrolet Silverado and fifth-generation GMC Sierra. The L82 uses Active Fuel Management instead of the L84's Dynamic Fuel Management system and is only available on lower-trim trucks.

Applications:

Year(s) Model Power Torque
2019–2021 Chevrolet Silverado/GMC Sierra 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm

The L84 is one of two 5.3L V8s available in the 4th generation Chevrolet Silverado and GMC Sierra. The L84 is distinguished from the L82 by the presence of the Dynamic Fuel Management System and is either available or standard on mid-to-high-level trims. The L84 is also the base engine on the 2021–present Chevrolet Tahoe, GMC Yukon, Chevrolet Suburban, and GMC Yukon XL.

Applications:

Year(s) Model Power Torque
2019–present Chevrolet Silverado/GMC Sierra 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm
2021–present Chevrolet Tahoe/GMC Yukon 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm
Chevrolet Suburban/GMC Yukon XL 355 hp (265 kW) at 5600 rpm 383 lb⋅ft (519 N⋅m) at 4100 rpm

3.921 in. bore blocks (2014–present)

edit

These V6 engines are based on the V8 version of the Gen V family, but with two fewer cylinders – a design lineage that dates back to the previous 4.3L V6, which was itself a Gen I small block with a pair of cylinders removed.

Of special note, there were no V6 engines based on Generation II, III, or IV small-block V8s.

4.3 L

edit

Dubbed EcoTec3, the 4.3 L (260 cu in) is a Generation V small block V6 truck engine. It gets its displacement from bore and stroke of 99.6 mm × 92 mm (3.921 in × 3.622 in) with a compression ratio of 11.0 to 1. Firing order is 1-6-5-4-3-2.[82]

This engine replaces the unrelated 4.3L V6 whose lineage dates back to 1978.

Applications:

Year(s) Model Power Torque
2014–2021 Chevrolet Silverado/GMC Sierra 1500 285 hp (213 kW) at 5300 rpm 305 lb⋅ft (414 N⋅m) at 3900 rpm
297 hp (221 kW) at 5300 rpm E85 330 lb⋅ft (447 N⋅m) at 3900 rpm E85

The engine is essentially the same as the LV3, but without Active Fuel Management technology. The LV1 made its debut in the 2018 model year GM full-size vans—the 2018 Chevrolet Express and 2018 GMC Savana—as the successor to the Gen IV 4.8L L20.[83]

Applications:

Year(s) Model Power Torque
2018–present Chevrolet Express/GMC Savana 2500/3500 265 hp (198 kW) at 5200 rpm 295 lb⋅ft (400 N⋅m) at 4000 rpm

Generation VI

edit

General Motors announced in January 2023 that plans for a sixth generation of small-block were in place, with the company investing $854 million into its various manufacturing plants. The timeline for the release of the new generation is not yet known.[84][85][86]

Engine table

edit

The eighth character in the VIN or the RPO code from the glove box sticker can be used to identify which type of LS engine a vehicle has.

Gen III/IV/V Years offered Engine code (VIN code) Power (hp) Torque (lb.-ft.) Size (L) Fuel type Bore (in) Stroke (in) Compression ratio Block and heads Block features
III 1997–2005 LS1 (G) 305–350 at 5600 350-365 at 4400 5.7 91[87] 3.90 3.622 10.25:1 Aluminum
III 2001–2005 LS6 (S) 385–405 at 6000 385–400 at 4800 5.7 3.90 3.622 10.5:1 Aluminum
III 1999–2007 LR4 (V) 255–285 285–295 4.8 3.78 3.3 9.45:1 Iron/Alum. heads
III 1999–2007 LM7 (T) 270–295 315–335 5.3 3.78 3.622 9.49:1 Iron/Alum. heads
III 2002–2007 L59 (Z) 285–295 320–335 5.3 E85-capable 3.78 3.622 9.5:1 Iron/Alum. heads
III 2003–2004 LM4 (P) 290 325 5.3 3.78 3.622 9.5:1 Aluminum
III 2005–2007 L33 (B) 310 at 5200 335 at 4400 5.3 3.78 3.622 9.9:1 Aluminum Only available on 4WD extended-cab standard-bed trucks
III 1999–2008 LQ4 (U) 300–325 at 5200 360–370 at 4400 6.0 87 4.00 3.622 9.4:1 Iron/Iron-Alum. heads 1999–2000 engines have iron heads
III 2002–2007 LQ9 (N) 345 at 5200 380 at 4000 6.0 4.00 3.622 10.0:1 Iron/Alum. heads
IV 2008–2017 LS3 (W) 426–436 at 5900 420–428 at 4600 6.2 93 recommended 4.065 3.622 10.7:1 Aluminum Sodium exhaust valves
IV 2010–2015 L99 (J) 400 at 5900 410 at 4300 6.2 E85-capable 4.065 3.622 10.4:1 Aluminum AFM, VVT,
IV 2009–2015 LSA (P) 556–580 at 6100 551–556 at 3800 6.2 93 required 4.065 3.622 9.1:1 Aluminum 1.9L Supercharger
IV 2010–2014 L94 (F) 403 at 5700 417 at 4300 6.2 E85-capable 4.065 3.622 10.4:1 Aluminum AFM, VVT
IV 2007–2009 L76 (Y) 361–367 at 5600 375–385 at 4400 6.0 4.00 3.622 10.4:1 Aluminum AFM, VVT (truck applications only)
IV 2011–2016 L77 (2) 362 at 5700 391 at 4400 6.0 E85-capable 4.00 3.622 10.4:1 Aluminum AFM
IV 2010–2020 L96 (G) 322–360 at 4400–5400 373–382 at 4200–4400 6.0 E85-capable 4.00 3.622 9.6:1 Iron/Alum. heads VVT
IV 2009–2010 L98 (H) 362 at 5700 391 at 4400 6.0 4.00 3.622 10.4:1 Aluminum L76 with AFM hardware removed
IV 2007–2009 LY2 (C) 260–295 295–305 4.8 3.78 3.3 9.08:1 Iron/Alum. heads No VVT
IV 2010–2012 L20 (A) 260–302 at 5400 295–305 at 4600 4.8 E85-capable 3.78 3.3 8.8:1 Iron/Alum. heads No AFM, VVT
IV 2005–2009 LH6 (M) 300–315 330–338 5.3 3.78 3.622 9.95:1 Aluminum AFM, VVT*
IV 2007–2009 LY5 (J) 315–320 at 5200 335–340 at 4000 5.3 3.78 3.622 9.95:1 Iron/Alum. heads AFM, VVT*
IV 2007–2013 LMG (0) 315–320 at 5200 335–340 at 4000 5.3 E85-capable 3.78 3.622 9.6:1 Iron/Alum. heads AFM, VVT*
IV 2007–2012 LC9 (3) or (7) 315–320 at 5400 335 at 4000 5.3 E85-capable 3.78 3.622 9.95:1 or 9.6:1 Aluminum AFM, VVT*
IV 2005–2009 LS4 (C) 303 at 5600 323 at 4400 5.3 3.78 3.622 10.0:1 Aluminum AFM, FWD
IV 2008–2009 LH8 (L) 300 at 5200 320 at 4000 5.3 3.78 3.622 9.9:1 Aluminum
IV 2010–2012 LH9 (P) 300 at 5200 320 at 4000 5.3 E85-capable 3.78 3.622 9.6:1 Aluminum VVT
IV 2007–2008 L92 (8) 403 415 6.2 4.065 3.622 10.5:1 Aluminum VVT
IV 2009–2013 L9H (2) 403 415 6.2 E85-capable* 4.065 3.622 10.5:1 Aluminum VVT
IV 2005–2007, 2009 LS2 (U) 390–400 at 6000 400 at 4400 6.0 93 4.00 3.622 10.9:1 Aluminum
IV 2007–2010 LY6 (K) 361 at 5600 385 at 4400 6.0 4.00 3.622 9.67:1 Iron/Alum. heads VVT
IV 2008–2009 LFA (5) 332 at 5100 367 at 4100 6.0 Hybrid 4.00 3.622 10.8:1 Aluminum AFM
IV 2010–2012 LZ1 (J) 332 at 5100 367 at 4100 6.0 Hybrid 4.00 3.622 10.8:1 Aluminum AFM | VVT
IV 2009–2013 LS9 (R/T)[88] 638 at 6500 604 at 3800 6.2 92 4.065 3.622 9.1:1 Aluminum 2.3L Supercharger | Ti connecting rods | forged pistons | dry sump
IV 2006–2015 LS7 (E) 505 at 6300 470 at 4800 7.0 91 4.125 4.00 11.0:1[89] Aluminum Ti connecting rods | dry sump
IV/V Aftermarket LSX376 473 at 6000 444 at 5000 6.2 87 4.065 3.622 9:1 Iron/Alum. heads
IV/V OEM LSX454 505 at 5400 515 at 4400 7.4 93 4.185 4.125 10.0:1 Iron/Alum. heads
IV/V Aftermarket LSX454 627 at 6300 586 at 5100 7.4 92 4.185 4.125 11.0:1 Iron/Alum. heads
IV/V Aftermarket LSX454R 776 at 7000 680 at 4500 7.4 110 4.185 4.125 13.1:1 Iron/Alum. heads[90]
V 2014–present LT1 455–460 at 6000 460–465 at 4600 6.2 93rec 4.065 3.622 11.5:1 Aluminum VVT | DI | dry sump (Corvette) | AFM
V 2020–present LT2 490–495 at 6450 465–470 at 5150 6.2 4.065 3.622 11.5:1 Aluminum VVT | DI | dry sump | AFM
V 2015–present LT4 640–650 at 6400 630–650 at 3600 6.2 4.065 3.622 10:1 Aluminum VVT | DI | 1.7L supercharger | dry sump(Corvette) | AFM
V 2018–2020 LT5 755 at 6400 715 at 3600 6.2 4.065 3.622 10:1 Aluminum VVT | Hybrid port/direct injection | 2.6L supercharger | dry sump
V 2014–present L83 (C) 355–376 at 5600 383–416 at 4100 5.3 E85-capable 3.78 3.622 11.0:1 Aluminum VVT | DI | AFM
V 2014–present L86 (J) 420 at 5600 460 at 4100 6.2 93 4.065 3.622 11.5:1 Aluminum VVT | DI | AFM
V 2020–present L8T[91] 401 at 5200 464 at 4000 6.6 87 4.065 3.86 10.5:1 Iron/Alum. heads VVT | DI
Note 1: Depending upon vehicle application (truck, SUV, car); horsepower, torque, and fuel requirements will vary. VIN code indicating engine RPO is usually not consistent between vehicle types (cars or trucks) or years. With few exceptions, rpm redline is generally 6000 or higher.Note 2: Block features are generally dependent upon the generation but are not always built-in. Typical features are AFM (Active Fuel Management), VVT (Variable Valve Train), and Front Wheel Drive (FWD). Features marked with an * indicate that only certain model years had that feature.

Known issues

edit

In the early production run of the LS-series engine, some engines encountered 'piston slap' during the first few minutes after a cold engine start; this sound is caused by the pistons rocking slightly in the cylinder until they reach operating temperature/size. "Piston slap" sometimes sounds more like a knock or the sound of a diesel engine running. It is typically only present when the engine is cold and disappears as the engine reaches operating temperature.[92]

Another common problem with the 2001–2006 5.3L engines was cracking cylinder heads. This is commonly called the "Castech Head" failure. GM issued a Technical Service Bulletin on this failure to help service technicians identify the problem. The head casting number (which can be viewed from the passenger side of the vehicle just in front of the valve cover) was 706. Some heads with this casting number would fail (but not all of them) as GM had different suppliers for the same head. The failure was due to undetected porosity around the oil drains in the head.[93]

Yet another common problem with the 2005–2016 fourth generation V8 LS engines was a failure of the specialized lifters in engines equipped with the AFM system. While in AFM operation, the lifters would sometimes fail to come out of AFM mode and cause the engine to go into 'limp home' mode. In this mode damage could occur to the pistons, camshaft, or the lifters themselves. The resulting solution was a package of components that would replace the lifters, lifter guides, camshaft, Valve Lifter Oil Manifold (VLOM) plate. Cylinder heads were required to be removed from the engine in order to replace all the components. The engine computer also required reprogramming to permanently Disable AFM. [94] [95] [96] [97] [98] [99] [100] [101] [102]

Build-your-own program

edit

In 2011, Chevrolet Performance began to offer the build your own engine program for LS7 (part number 19259944) or LS9 (part number 19259945) crate engines. It also provides customers the experience of visiting GM's unique Performance Build Center in Wixom, Michigan, where they will join a specially trained engine builder to assist in the start-to-finish assembly of the engine they purchased – from installing the crankshaft in the cylinder block to topping off the engine with its intake system. In the case of the LS9, it also means installing the supercharger assembly. Upon completion, a personalized nameplate is added to the engine.[103]

The build-your-own engine program associated with the V8 engines, available for buyers of Chevrolet Corvette, Cadillac XLR, and certain top-spec Chevrolet Camaro models, was temporarily halted after the closure of GM Performance Build Center in Wixom, Michigan. The program's venue was reported to be relocated to the Corvette assembly plant in Bowling Green, Kentucky.[104]

Aftermarket

edit
LS7.R

The LS7.R engine is a variation of the LS7 used in the highly successful C6.R American Le Mans Series racecar. It was crowned as Global Motorsport engine of the year by a jury of 50 race engine engineers on the Professional Motorsport World Expo 2006 in Cologne, Germany.[105]

LSX

LSx is also used to denote any LS engine.

 
Chassis with LSX engine

At the 2006 SEMA show, GM Performance Parts introduced the LSX engine, an all-new cast-iron racing block based on the LS7 engine. It was designed with help from drag racing legend Warren Johnson. It offers displacements ranging from 364 to 511 cu in (6.0 to 8.4 L) with a bore and stroke of 4+14 in × 4+12 in (108.0 mm × 114.3 mm) and is capable of withstanding 2,500 bhp (1,864 kW). This block incorporates two extra rows of head-bolt holes per bank for increased clamping capacity. The six bolt steel main caps are the same ones used on the LS7 engine. The engine debuted at the auto show in a customized 1969 Camaro owned by Reggie Jackson. The LSX was available starting the second quarter of 2007, set to be available in authorized dealerships and retailers on March 31, 2007. The Hennessey Venom GT also uses the LSX engine based on LS7.[106]

Chevrolet Performance LSX Bowtie block includes LSX specific six-bolts-per-cylinder head bolt pattern, billet-steel six-bolt dowel-located main bearing caps, extra-thick deck for maximum clamping force, extra-thick cylinder walls allow increased bore capacity (maximum 4.2 in (106.7 mm) bore still allows 0.2 in (5.1 mm) minimum wall thickness), true priority main oiling system, main web bay-to-bay breathing holes reduce crank windage, orange powder coat finish, machined bore at 3.88 in (98.6 mm) is ready for final boring/honing.

A 396 cu in (6.5 L) version engineered by Ilmor is used in NASCAR for the Craftsman Truck Series and the ARCA Racing Series as an option engine. Most teams in both series (known as "NT1" in the Truck Series and the "ARCA 396" in ARCA) have switched to the engine because of cost savings, as engines must last 1,500 miles and rebuilds are about one-thirds the cost of a new engine.[107][108]

0LSX376

Chevrolet Performance LSX376 crate engines are updated versions of LSX crate engine family designed to support up to 1,000 hp (746 kW). All models use the Chevrolet Performance LSX Bowtie block.

LSX376-B15 (part number 19299306) includes forged steel crankshaft, forged powdered metal I-beam rods (both the crankshaft and rods from the LSA engine), forged aluminum pistons (9.0:1 compression), and high-flow rectangular-port six-bolt LSX-LS3 heads for supercharged and turbocharged combinations producing up to 15 psi (1.0 bar) of boost and up to about 1,000 hp (746 kW).

LSX376-B8 (part number 19171049) is a more economical version that is capable of approximately 8 psi (0.55 bar), for an engine producing approximately 600 hp (447 kW). It is designed for production-style supercharger and turbo systems used without enhancements or modifications.[109]

LSX454 and LSX454R

Chevrolet Performance created the 454 big-block Chevy race engine in 1970 and continued production of the crate engine through 2001. The addition of EFI and picking up the Vortec 7400 name took place in 1996 which was replaced with the Vortec 8100 platform once the 7400 was retired. Chevrolet Performance released the 454 again in 2011 as a small-block crate engine dubbed the LSX454R officially rated at 776 horsepower at 7,000 rpm and 649 lb-ft of torque at 5,100 rpm. The LSX454R was discontinued in July 2018 and was recorded as one of the more powerful LS crate engines to be assembled from Chevy Performance.[110][111][self-published source?]

Noonan Race Engineering

Noonan Race Engineering developed two billet aluminum blocks based on the LS engine. Bore sizes are up to 4.185 in and stroke up to 4.5 in are available, making a 495 cu in displacement possible. The billet construction provides added block integrity suited to high horsepower applications. The block design incorporates turbocharger pressure feed lines in the front of the valley and oil dump ports in the side of the block to return oil to the sump. In addition to the solid block, a waterjacketed version was designed to provide better cooling options for street or endurance purposes. Noonan also developed intake manifolds for the LS, specifically for turbocharging or twin turbo charging or supercharging.[112]

See also

edit

Notes

edit
  1. ^ The LS364 was a carbureted crate engine offered only for the aftermarket.[2]

References

edit
  1. ^ a b c d Strohl, Daniel (January 19, 2021). "The definitive Hemmings guide to the GM/Chevy LS-series V-8s". Hemmings Motor News. Retrieved March 19, 2023.
  2. ^ a b Staff (September 21, 2017). "LS Engines 101: An Introductory Overview of the Gen III/IV LS Engine Family". OnAllCylinders. Retrieved March 23, 2023.
  3. ^ "How much does it weigh?". pro-touring.com. April 20, 2009.
  4. ^ "Intro to the LS1 and LS6". Summit Racing Equipment. June 6, 2017.
  5. ^ Lingeman, Jake (November 28, 2011). "GM builds 100-millionth small-block engine". Autoweek. Retrieved March 18, 2023.
  6. ^ Prosser, Dan (July 26, 2019). "The world's greatest car engines". Autocar. Retrieved March 18, 2023.
  7. ^ McGuire, Bill; Freiburger, David (April 19, 2012). "Reader Voted - 20 Best V8s of All Time - Hot Rod Magazine". MotorTrend. Retrieved March 18, 2023.
  8. ^ Katsianis, Jordan (April 22, 2021). "Best V8 cars past and present – our favourite eights and the cars they're found in". evo. Retrieved March 18, 2023.
  9. ^ "10 Longest Produced American V8 Engines – Autowise". Retrieved March 18, 2023.
  10. ^ Gonderman, Monica (January 23, 2023). "The V-8 Is Not Dead: GM Confirms New Sixth-Gen Small-Block". MotorTrend. Retrieved March 20, 2023.
  11. ^ Perkins, Chris (January 23, 2023). "GM Spending $854 Million to Build New Small-Block V-8". Road & Track. Retrieved March 20, 2023.
  12. ^ "Ranked: the longest-living car engines". Autocar. Retrieved March 18, 2023.
  13. ^ "LS7 and LS427/570 Engines Discontinued by Chevrolet". MotorTrend. January 31, 2022. Retrieved March 19, 2023.
  14. ^ Garbe, Eric (January 21, 2022). "A Guide to LS Cylinder Heads". Engine Builder Magazine. Retrieved March 20, 2023.
  15. ^ Garbe, Eric (January 21, 2022). "A Guide to LS Cylinder Heads". Engine Builder Magazine. Retrieved March 18, 2023.
  16. ^ "Everything You Want To Know About The GM Gen V / LT Engine". Holley Performance Products. Retrieved March 18, 2023.
  17. ^ Panait, Mircea (August 28, 2021). "General Motors LT Small-Block V8 Engine Guide". autoevolution. Retrieved March 19, 2023.
  18. ^ a b c d Rupp, Steven; Udy, Jason (February 27, 2023). "The Legendary Small-Block Chevy V-8: A Look Back at Its Highlights and Evolution". MotorTrend. Retrieved March 20, 2023.
  19. ^ Sherman, Don (February 21, 2022). "LT6 Breakdown: The Z06's 670-hp V-8 is a landmark achievement". Hagerty Media. Retrieved March 19, 2023.
  20. ^ "LS Gen III vs Gen IV Swap Guide". www.ictbillet.com. Retrieved March 19, 2023.
  21. ^ Smith, Jeff (December 14, 2020). "Everything You Want To Know About The GM Gen V / LT Engine". Holley Performance Products. Retrieved March 19, 2023.
  22. ^ "9 Popular Engine Swaps - Choose Wisely". MotorTrend. March 26, 2014. Retrieved March 19, 2023.
  23. ^ Garbe, Eric (August 12, 2021). "Popular Engine Swaps". Engine Builder Magazine. Retrieved March 19, 2023.
  24. ^ "Everything You Need to Know About LS, LSX, and Vortec Engines: Specs, History, Swaps, and More". MotorTrend. Retrieved March 21, 2023.
  25. ^ "Guide to LS engine swaps". WhichCar. May 25, 2018. Retrieved March 19, 2023.
  26. ^ a b c d Stenquist, Paul (January 18, 2013). "Talking About a New Generation: A Redesigned Engine for Corvette". The New York Times. ISSN 0362-4331. Retrieved March 22, 2023.
  27. ^ a b "From blue flame six to LT5". Machine Design. Vol. 65, no. 17. p. 32. ProQuest 217149408 – via ProQuest.
  28. ^ a b Furchgott, Roy (September 10, 2020). "Chevy's Little Engine That Could". The New York Times. ISSN 0362-4331. Retrieved March 22, 2023.
  29. ^ Conwill, David (May 18, 2021). "Even the malaise-era Chevy Corvette is still fun to drive, and value-priced". Hemmings Motor News. Retrieved March 22, 2023.
  30. ^ a b "Build Some Power With a '92-'96 Gen II LT1". MotorTrend. January 1, 2008. Retrieved March 23, 2023.
  31. ^ a b c Webster, Larry (May 1, 2004). "The Pushrod Engine Finally Gets its Due". Car and Driver. Retrieved March 21, 2023.
  32. ^ "2014 Chevrolet Corvette C7 Gains New LT1 6.2-Liter V-8". MotorTrend. October 24, 2012. Retrieved March 23, 2023.
  33. ^ "Chevy Gen III V-8 Secrets - A Look Inside The LS1 And LS6 Engines - Hot Rod Magazine". MotorTrend. May 4, 2009. Retrieved March 23, 2023.
  34. ^ "1997-2004 LS1 Engine - GM's All-New, All-Aluminum Mouse Motor". MotorTrend. June 30, 2014. Retrieved March 23, 2023.
  35. ^ Silvestro, Brian (April 25, 2018). "Why Pushrod Engines Have a Low Redline". Road & Track. Retrieved March 21, 2023.
  36. ^ Garbe, Eric (January 21, 2022). "A Guide to LS Cylinder Heads". Engine Builder Magazine. Retrieved March 23, 2023.
  37. ^ "Cylinder Block - Building, Inspecting - Tech - Hot Rod Magazine". MotorTrend. January 2, 1998. Retrieved March 23, 2023.
  38. ^ "Flat-Plane Crank DOHC LT6 to Power the 2023 Corvette Z06! Details and Specs". MotorTrend. October 26, 2021. Retrieved March 23, 2023.
  39. ^ 2022 Chevrolet Performance catalog: The LS/LT Engine Family Tree
  40. ^ Ashley, Steven (February 1991). "Connecting rods that crack by design". Mechanical Engineering. 113 (2). American Society of Mechanical Engineers: 54. ISSN 0025-6501 – via Gale OneFile.
  41. ^ "Everything You Wanted to Know About the GM LS Engine Family". auto.jepistons.com. September 10, 2022. Retrieved March 30, 2023.
  42. ^ Life is a [sic] Enigma (August 24, 2021). "LS Engine WEIGHTS". s10forum.com.
  43. ^ Worner, Randy (December 21, 2022). "LS Firing Order and Cylinder Numbers". Chevy Geek. Retrieved April 25, 2023.
  44. ^ "LS1 Info and Specifications". Smokemup.com. Archived from the original on February 11, 2012. Retrieved January 25, 2012.
  45. ^ "2005 Chevrolet Corvette Z51". September 2004.
  46. ^ "LS Engines - Small Block Engine - Crate Engine". GM Performance Parts. March 24, 2011. Archived from the original on December 30, 2011. Retrieved January 25, 2012.
  47. ^ "GM 5.7 Liter V8 Small Block LS1 Engine". GM Authority. June 13, 2016. Retrieved October 22, 2021.
  48. ^ Corvette LS6 - Ruthless Pursuit of Power Archived October 12, 2007, at the Wayback Machine
  49. ^ Staff (July 23, 2007). "SSC Ultimate Aero TT". Autocar. Retrieved May 26, 2023.
  50. ^ "NASCAR's new motor". Circletrack.com. Archived from the original on January 22, 2012. Retrieved January 25, 2012.
  51. ^ "Nascar block wins award - Grainger & Worrall". www.gwcast.com. Archived from the original on December 24, 2013.
  52. ^ "2005 Pontiac GTO Program #2423 | MotorWeek".
  53. ^ "All-new G8 accelerates new era of rear-wheel-drive performance at Pontiac". Global Auto Index. February 7, 2007. Archived from the original on September 27, 2007. Retrieved August 30, 2007.
  54. ^ "2010 Vortec 6.0L V8 VVT Hybrid (LZ1)". GM. 2010. Archived from the original on April 24, 2014. Retrieved May 21, 2013.
  55. ^ "2009 "LS4" 5.3L V8 ( LS4 )" (PDF). gmpowertrain.ca. Archived from the original (PDF) on October 8, 2010.
  56. ^ a b "GM Powertrain". GM. Archived from the original on July 2, 2013. Retrieved May 21, 2013.
  57. ^ "GM 5.3L Liter V8 Vortec LMG Engine". GM Authority. April 5, 2014. Retrieved January 28, 2022.
  58. ^ a b "GM Inside News Forum - Engine Guide". Gminsidenews.com. March 22, 2009. Archived from the original on January 17, 2009. Retrieved April 26, 2009.
  59. ^ "Chevrolet Pressroom - United States - Colorado". media.gm.com. Retrieved May 18, 2019.
  60. ^ "Chevrolet Pressroom - United States - Colorado". media.gm.com. Retrieved May 18, 2019.
  61. ^ "Chevrolet Pressroom - United States - Colorado". media.gm.com. Retrieved May 18, 2019.
  62. ^ "Chevrolet Pressroom - United States - Colorado". media.gm.com. Retrieved May 18, 2019.
  63. ^ "GM 5.3L Liter V8 Vortec LMF Engine Info, Power, Specs, Wiki | GM Authority". April 5, 2014.
  64. ^ "Gen III & Gen IV Vortec Truck Engines". GM High Tech Performance Magazine. GM High-Tech Performance. February 26, 2007. Archived from the original on July 11, 2011. Retrieved September 21, 2010.
  65. ^ "2005 Chevrolet Corvette Z06, 2006 MY C6 US specifications". carfolio.com. Retrieved June 23, 2018.
  66. ^ Brian Silvestro (January 28, 2022). "Chevy Officially Discontinues the LS7". Road & Track. Retrieved February 10, 2022.
  67. ^ "2008 HSV W427 specifications". carfolio.com. Retrieved June 23, 2018.
  68. ^ "Revealed: our fastest, most expensive road car". The Sydney Morning Herald. February 29, 2008. Archived from the original on April 20, 2008.
  69. ^ "CSV GTS LS7 - HSV's faithful wait for an official 7.0-litre project, but CSV has already beaten the factory to the power punch". Wheels. Motoring.com.au. December 2007. Archived from the original on June 20, 2015. Retrieved June 21, 2015.
  70. ^ Vertical Aviation Technologies (2013). "Hummingbird 300LS". Archived from the original on January 28, 2013. Retrieved February 14, 2013.
  71. ^ "GM LS427/570". chevrolet.com. Retrieved July 17, 2023.
  72. ^ "2007 Chevrolet Corvette ZR1, 2009 MY C6 US". carfolio.com. Retrieved June 24, 2018.
  73. ^ Sutton, Mike (August 29, 2007). "GM Reveals Small-Block V8 With Direct Injection". WardsAuto.com. Archived from the original on June 13, 2008. Retrieved August 30, 2007.
  74. ^ "GM 6.2 Liter Supercharged V8 Small Block LT4 Engine". GM Authority. April 16, 2014. Archived from the original on September 11, 2017. Retrieved September 8, 2017.
  75. ^ Mackenzie, Angus (January 13, 2014). "The torque's the thing: 625-hp Z06 Corvette debuts in Detroit". www.gizmag.com. Gizmag. Archived from the original on September 6, 2015.
  76. ^ Petrány, Máté (November 17, 2017). "2019 SCG 004S: This Is Glickenhaus's Volume Road/Race Car". Road & Track. Online. Retrieved July 18, 2022.
  77. ^ "6.6L V-8 L8T Features & Specifications". GM Powered Solutions. GM. Retrieved November 11, 2024.
  78. ^ "GM 6.6 Liter V8 L8T Engine". GM Authority. February 6, 2019. Retrieved October 22, 2021. The L8T V8 is a gasoline engine produced by General Motors for use in Heavy Duty pickup trucks.
  79. ^ Smith, Jeff (April 2, 2019). "The New GM L8T Engine Is A 401ci Gen-V That Hot-Rodders Will Love". enginelabs. Retrieved October 22, 2021. Because this L8T is intended for heavy-duty truck pulling applications, GM lowered the static compression in order to operate this engine continuously on 87-octane gasoline.
  80. ^ Smirnov, Andre (November 19, 2016). "2017 GMC Sierra 1500 eAssist Hybrid: Is There Future in Hybrid Pickup Trucks?". www.tfltruck.com. Archived from the original on April 6, 2017. Retrieved April 5, 2017.
  81. ^ "Chevrolet Introduces 2016 Silverado with eAssist" (Press release). Detroit, MI: Chevrolet Pressroom. February 25, 2016. Retrieved April 5, 2017.
  82. ^ "4.3L V6 LV1". poweredsolutions.gm.com. Retrieved November 10, 2021.
  83. ^ "GM 4.3 Liter V6 EcoTec3 LV1 Engine". gmauthority.com. September 22, 2017. Retrieved November 10, 2021.
  84. ^ Perkins, Chris (January 23, 2023). "GM Spending $854 Million to Build New Small-Block V-8". Road & Track. Retrieved March 22, 2023.
  85. ^ Wren, Wesley (February 3, 2023). "This Is Why GM Is Launching a New Small Block V8". Autoweek. Retrieved March 22, 2023.
  86. ^ "The V-8 Is Not Dead: GM Confirms New Sixth-Gen Small-Block". MotorTrend. January 23, 2023. Retrieved March 22, 2023.
  87. ^ "2001 Chevrolet Camaro Owner's Manual" (PDF) (First ed.). General Motors Corporation. 2000. Part Number 10421946 A. Archived from the original (PDF) on October 1, 2015. Retrieved June 13, 2022.
  88. ^ LS9 Crate Engine Specifications Archived April 24, 2014, at the Wayback Machine; Chevrolet.com
  89. ^ "LS7: The Largest, Most Powerful Small-Block Ever Built". National Corvette Museum. Archived from the original on January 12, 2005. Retrieved January 10, 2005.
  90. ^ LSX454R Archived March 15, 2012, at the Wayback Machine; GM Performance Parts online
  91. ^ "New 6.6L V8 GM Engine For 2020 Silverado, Sierra HD Assigned L8T RPO Code". GM Authority. February 7, 2019. Retrieved February 14, 2019.
  92. ^ "What Is Piston Slap And False Knock?". auto.jepistons.com. Retrieved March 20, 2023.
  93. ^ "Castech Head Failure TSB" (PDF). Archived (PDF) from the original on March 27, 2012. Retrieved January 25, 2012.
  94. ^ https://help.summitracing.com/app/answers/detail/a_id/4901/~/ls-engine-tech-%E2%80%93-active-fuel-management-%28afm%29 [bare URL]
  95. ^ "Why and How to Disable GM's Active Fuel Management (AFM)!". YouTube. April 28, 2021.
  96. ^ "SDPC Tech Tips: DOD/AFM Delete 101". YouTube. March 11, 2019.
  97. ^ "17 Plaintiffs Sent to Arbitration in GM Valve Lifter Lawsuit". February 24, 2023.
  98. ^ "Chevy AFM Problem Years (Is It Serious?) - Autocornerd". July 4, 2022.
  99. ^ https://www.melling.com/wp-content/uploads/2018/03/Melling-tech-bulletin-on-GM-LS-Deactivation-Lifter-Issues-3.1.18-1.pdf [bare URL PDF]
  100. ^ "GM Lifter Problems Could Lead to Class Action Lawsuit". October 14, 2021.
  101. ^ Consumer, Consider The (January 4, 2022). "General Motors Faulty AFM Lifters Class Action Lawsuit: Valve Train Defect". Consider The Consumer.
  102. ^ "Harrison et al v. General Motors, LLC, No. 2:2021cv12927 - Document 35 (E.D. Mich. 2022)".
  103. ^ "Build Your Own LS7 or LS9 Crate Engine". gm.com. October 28, 2011.
  104. ^ "GM relocating build-your-own engine program to Bowling Green". autoblog.com. September 16, 2013. Archived from the original on September 20, 2013.
  105. ^ Nunez, Alex (November 13, 2006). "Corvette Racing's LS7.R named Race Engine of the Year". autoblog. Retrieved February 18, 2022.
  106. ^ Hellwig, Ed (October 2006). "2006 SEMA Show - Reggie Jackson Camaro". Edmunds Inside Line. Archived from the original on August 20, 2007. Retrieved August 30, 2007.
  107. ^ Mike Magda (December 25, 2014). "Ilmor 396 ARCA Engine Saves Money, Lays Off Engine Builders". enginelabs.com. Retrieved February 23, 2022.
  108. ^ "Ilmor NT1 engine powers Gander RV & Outdoors Truck Series". Ilmor Engineering. February 8, 2020. Retrieved February 23, 2022 – via NASCAR.com.
  109. ^ "Stronger LSX™ Bowtie Blocks are Foundations for Boost-Ready Chevrolet Performance LSX376 Crate Engines". gm.com. November 27, 2012.
  110. ^ Havins, Brian (August 17, 2018). "End Of The Line: A Last Look At The LSX454R". LSX Magazine. Retrieved February 15, 2022.
  111. ^ Kluczyk, Barry (August 14, 2014). "Big Power Numbers from GM's LSX454R, but Reliability is the Focus". LSX Magazine. Retrieved February 15, 2022.
  112. ^ Engineering, Noonan-Ultimate Race. "LS Edge". Noonan - Ultimate Race Engineering. Retrieved September 30, 2019.