Pioneer 11 (also known as Pioneer G) is a NASA robotic space probe launched on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, the solar wind, and cosmic rays.[2] It was the first probe to encounter Saturn, the second to fly through the asteroid belt, and the second to fly by Jupiter. Later, Pioneer 11 became the second of five artificial objects to achieve an escape velocity allowing it to leave the Solar System. Due to power constraints and the vast distance to the probe, the last routine contact with the spacecraft was on September 30, 1995, and the last good engineering data was received on November 24, 1995.[3]

Pioneer 11
An artist's impression of Pioneer 11 on its way to interstellar space.
Mission typePlanetary / Heliosphere exploration
OperatorNASA / Ames
COSPAR ID1973-019A Edit this at Wikidata
SATCAT no.6421
Websitescience.nasa.gov
Mission duration22 years, 7 months and 19 days
Spacecraft properties
ManufacturerTRW
Launch mass258.5 kg (570 lb)[1]
Power155 watts (at launch)
Start of mission
Launch dateApril 6, 1973, 02:11:00 (1973-04-06UTC02:11Z) UTC[1]
RocketAtlas SLV-3D Centaur-D1A Star-37E
Launch siteCape Canaveral LC-36B
End of mission
DisposalDecommissioned
Last contactNovember 24, 1995 (1995-11-25)
Flyby of Jupiter
Closest approachDecember 3, 1974
Distance43,000 km (27,000 mi)
Flyby of Saturn
Closest approachSeptember 1, 1979
Distance21,000 km (13,000 mi)

Mission background

edit

History

edit

Approved in February 1969, Pioneer 11 and its twin probe, Pioneer 10, were the first to be designed for exploring the outer Solar System. Yielding to multiple proposals throughout the 1960s, early mission objectives were defined as:

  • Explore the interplanetary medium beyond the orbit of Mars
  • Investigate the nature of the asteroid belt from the scientific standpoint and assess the belt's possible hazard to missions to the outer planets.
  • Explore the environment of Jupiter.

Subsequent planning for an encounter with Saturn added many more goals:

  • Map the magnetic field of Saturn and determine its intensity, direction, and structure.
  • Determine how many electrons and protons of various energies are distributed along the trajectory of the spacecraft through the Saturn system.
  • Map the interaction of the Saturn system with the solar wind.
  • Measure the temperature of Saturn's atmosphere and that of Titan, the largest satellite of Saturn.
  • Determine the structure of the upper atmosphere of Saturn where molecules are expected to be electrically charged and form an ionosphere.
  • Map the thermal structure of Saturn's atmosphere by infrared observations coupled with radio occultation data.
  • Obtain spin-scan images of the Saturnian system in two colors during the encounter sequence and polarimetry measurements of the planet.
  • Probe the ring system and the atmosphere of Saturn with S-band radio occultation.
  • Determine more precisely the masses of Saturn and its larger satellites by accurate observations of the effects of their gravitational fields on the motion of the spacecraft.
  • As a precursor to the Mariner Jupiter/Saturn mission, verify the environment of the ring plane to find out where it may be safely crossed by the Mariner spacecraft without serious damage.[2]

Pioneer 11 was built by TRW and managed as part of the Pioneer program by NASA Ames Research Center.[3] A backup unit, Pioneer H, is currently on display in the "Milestones of Flight" exhibit at the National Air and Space Museum in Washington, D.C.[4] Many elements of the mission proved to be critical in the planning of the Voyager program.[5]

Spacecraft design

edit

The Pioneer 11 bus measures 36 centimeters (14 in) deep and with six 76-centimeter-long (30 in) panels forming the hexagonal structure. The bus houses propellant to control the orientation of the probe and eight of the twelve scientific instruments. The spacecraft has a mass of 259 kilograms.[6]

Attitude control and propulsion

edit
Orientation of the spacecraft was maintained with six 4.5-N,[7] hydrazine monopropellant thrusters: pair one maintains a constant spin-rate of 4.8 rpm, pair two controls the forward thrust, pair three controls attitude. Information for the orientation is provided by performing conical scanning maneuvers to track Earth in its orbit,[8] a star sensor able to reference Canopus, and two Sun sensors.[9]

Communications

edit
The space probe includes a redundant system transceivers, one attached to the high-gain antenna, the other to an omni-antenna and medium-gain antenna. Each transceiver is 8 watts and transmits data across the S-band using 2110 MHz for the uplink from Earth and 2292 MHz for the downlink to Earth with the Deep Space Network tracking the signal. Prior to transmitting data, the probe uses a convolutional encoder to allow correction of errors in the received data on Earth.[10]

Power

edit
 
SNAP-19 RTG on a Pioneer 10/11 replica
Pioneer 11 uses four SNAP-19 radioisotope thermoelectric generators (RTGs) (see diagram). They are positioned on two three-rod trusses, each 3 m (9 ft 10 in) in length and 120 degrees apart. This was expected to be a safe distance from the sensitive scientific experiments carried on board. Combined, the RTGs provided 155 watts at launch, and decayed to 140 W in transit to Jupiter. The spacecraft requires 100 W to power all systems.[11]

Computer

edit
Much of the computation for the mission was performed on Earth and transmitted to the probe, where it is able to retain in memory, up to five commands of the 222 possible entries by ground controllers. The spacecraft includes two command decoders and a command distribution unit, a very limited form of a processor, to direct operations on the spacecraft. This system requires that mission operators prepare commands long in advance of transmitting them to the probe. A data storage unit is included to record up to 6,144 bytes of information gathered by the instruments. The digital telemetry unit is then used to prepare the collected data in one of the thirteen possible formats before transmitting it back to Earth.[12]

Scientific instruments

edit

Pioneer 11 has one additional instrument more than Pioneer 10, a flux-gate magnetometer.[13]

Helium Vector Magnetometer (HVM)
  Measures the fine structure of the interplanetary magnetic field, mapped the Jovian magnetic field, and provides magnetic field measurements to evaluate solar wind interaction with Jupiter.[14]
Quadrispherical Plasma Analyzer
  Peer through a hole in the large dish-shaped antenna to detect particles of the solar wind originating from the Sun.[15]
Charged Particle Instrument (CPI)
  Detects cosmic rays in the Solar System.[17]
Cosmic Ray Telescope (CRT)
  Collects data on the composition of the cosmic ray particles and their energy ranges.[18]
Geiger Tube Telescope (GTT)
Surveys the intensities, energy spectra, and angular distributions of electrons and protons along the spacecraft's path through the radiation belts of Jupiter and Saturn.[19]
Trapped Radiation Detector (TRD)
 

Includes an unfocused Cerenkov counter that detects the light emitted in a particular direction as particles passed through it recording electrons of energy, 0.5 to 12 MeV, an electron scatter detector for electrons of energy, 100 to 400 keV, and a minimum ionizing detector consisting of a solid-state diode that measured minimum ionizing particles (<3 MeV) and protons in the range of 50 to 350 MeV.[20]

Meteoroid Detectors
  Twelve panels of pressurized cell detectors mounted on the back of the main dish antenna record penetrating impacts of small meteoroids.[21]
Asteroid/Meteoroid Detector (AMD)
  Meteoroid-asteroid detector looks into space with four non-imaging telescopes to track particles ranging from close by bits of dust to distant large asteroids.[22]
Ultraviolet Photometer
  Ultraviolet light is sensed to determine the quantities of hydrogen and helium in space and on Jupiter and Saturn.[23]
Imaging Photopolarimeter (IPP)
  The imaging experiment relies upon the spin of the spacecraft to sweep a small telescope across the planet in narrow strips only 0.03 degrees wide, looking at the planet in red and blue light. These strips are then processed to build up a visual image of the planet.[24]
Infrared Radiometer
  Provides information on cloud temperature and the output of heat from Jupiter and Saturn.[25]
  • Principal investigator: Andrew Ingersoll / California Institute of Technology[16]
Triaxial Fluxgate Magnetometer
  Measures the magnetic fields of both Jupiter and Saturn. This instrument is not carried on Pioneer 10.[26]

Mission profile

edit
 
Pioneer 11 launching from Launch Complex 36A.

Launch and trajectory

edit

The Pioneer 11 probe was launched on April 6, 1973, at 02:11:00 UTC, by the National Aeronautics and Space Administration from Space Launch Complex 36A at Cape Canaveral, Florida aboard an Atlas-Centaur launch vehicle, with a Star-37E propulsion module. Its twin probe, Pioneer 10, had been launched on March 3, 1972.

Pioneer 11 was launched on a trajectory directly aimed at Jupiter without any prior gravitational assists.[27] In May 1974, Pioneer was retargeted to fly past Jupiter on a north–south trajectory, enabling a Saturn flyby in 1979. The maneuver used 17 lb (7.7 kg) of propellant, lasted 42 minutes and 36 seconds, and increased Pioneer 11's speed by 230 km/h.[28] It also made two mid-course corrections, on April 11, 1973 and November 7, 1974.[1]

Encounter with Jupiter

edit

Pioneer 11 flew past Jupiter in November and December 1974. During its closest approach, on December 2, it passed 42,828 km (26,612 mi) above the cloud tops. The probe obtained detailed images of the Great Red Spot, transmitted the first images of the immense polar regions, and determined the mass of Jupiter's moon Callisto. Using the gravitational pull of Jupiter, a gravity assist was used to alter the trajectory of the probe towards Saturn and gain velocity. On April 16, 1975, following the Jupiter encounter, the micrometeoroid detector was turned off.[1]

  Media related to Pioneer 11 Jupiter encounter at Wikimedia Commons

Encounter with Saturn

edit

Pioneer 11 passed by Saturn on September 1, 1979, at a distance of 21,000 km (13,000 mi) from Saturn's cloud tops.[27]

By this time, Voyager 1 and Voyager 2 had already passed Jupiter and were en route to Saturn, so it was decided Pioneer 11 would pass through the Saturn ring plane at the same position Voyager 2 would later have to fly through in order to reach Uranus and Neptune. If there were faint ring particles capable of damaging a probe in that area, mission planners felt it was better to learn about it via Pioneer.[27] Thus, Pioneer 11 was acting as a "pioneer" in a true sense of the word; if danger were detected, then Voyager 2 could be redirected further away from the rings but miss the opportunity to visit the ice giants in the process.

Pioneer 11 imaged—and nearly collided with—one of Saturn's small moons, passing at a distance of no more than 4,000 km (2,500 mi). The object was tentatively identified as Epimetheus, a moon discovered the previous day from Pioneer's imaging, and suspected from earlier observations by Earth-based telescopes. After the Voyager flybys, it became known that there are two similarly sized moons (Epimetheus and Janus) in the same orbit, so there is some uncertainty about which one was the object of Pioneer's near-miss. Pioneer 11 encountered Janus on September 1, 1979, at 14:52 UTC, at a distance of 2,500 km (1,600 mi). At 16:20 UTC the same day, Pioneer 11 encountered Mimas at a distance of 103,000 km (64,000 mi).

Besides Epimetheus, instruments located another previously undiscovered small moon and an additional ring, charted Saturn's magnetosphere and magnetic field, and found its planet-sized moon, Titan, to be too cold for life. Hurtling underneath the ring plane, the probe sent back pictures of Saturn's rings. The rings, which normally seem bright when observed from Earth, appeared dark in the Pioneer pictures, and the dark gaps in the rings seen from Earth appeared as bright rings.

  Media related to Pioneer 11 Saturn encounter at Wikimedia Commons

Interstellar mission

edit

On February 25, 1990, Pioneer 11 became the fourth human-made object to pass beyond the orbit of the planets.[29]

By 1995, Pioneer 11 could no longer power any of its detectors, so the decision was made to shut it down.[30] On September 29, 1995, NASA's Ames Research Center, responsible for managing the project, issued a press release that began, "After nearly 22 years of exploration out to the farthest reaches of the Solar System, one of the most durable and productive space missions in history will come to a close." It indicated NASA would use its Deep Space Network antennas to listen "once or twice a month" for the spacecraft's signal, until "some time in late 1996" when "its transmitter will fall silent altogether." NASA Administrator Daniel Goldin characterized Pioneer 11 as "the little spacecraft that could, a venerable explorer that has taught us a great deal about the Solar System and, in the end, about our own innate drive to learn. Pioneer 11 is what NASA is all about – exploration beyond the frontier."[31] Besides announcing the end of operations, the dispatch provided a historical list of Pioneer 11 mission achievements.

NASA terminated routine contact with the spacecraft on September 30, 1995, but continued to make contact for about two hours every two to four weeks.[30] Scientists received a few minutes of good engineering data on November 24, 1995, but then lost final contact once Earth moved out of view of the spacecraft's antenna.[1][32]

Timeline

edit
 
Pioneer 10 and 11 speed and distance from the Sun
 
Heliocentric positions of the five interstellar probes (squares) and other bodies (circles) until 2020, with launch and flyby dates. Markers denote positions on 1 January of each year, with every fifth year labelled.
Plot 1 is viewed from the north ecliptic pole, to scale.
Plots 2 to 4 are third-angle projections at 20% scale.
In the SVG file, hover over a trajectory or orbit to highlight it and its associated launches and flybys.
Timeline of travel
Date Event
1973-04-06
Spacecraft launched at 02:11:00.
1974-04-19
Passage through the asteroid belt.
1974-11-03
Start Jupiter observation phase.
Time Event
1974-12-02
Encounter with Jovian system.
08:21:00
Callisto flyby at 786,500 km.
22:09:00
Ganymede flyby at 692,300 km.
1974-12-03
03:11:00
Io flyby at 314,000 km.
04:15:00
Europa flyby at 586,700 km.
05:00:21
Jupiter shadow entry.
05:01:01
Jupiter occultation entry.
05:21:19
Jupiter closest approach at 42,828 km.
05:33:52
Jupiter shadow exit.
05:43:03
Jupiter occultation exit.
22:29:00
Amalthea flyby at 127,500 km.
1975-01-01
Phase stop.
1979-07-31
Start Saturn observation phase.
Time Event
1979-08-29
Encounter with Saturnian system.
06:06:10
Iapetus flyby at 1,032,535 km.
11:53:33
Phoebe flyby at 13,713,574 km.
1979-08-31
12:32:33
Hyperion flyby at 666,153 km.
1979-09-01
14:26:56
Descending ring plane crossing.
14:50:55
Epimetheus flyby at 6,676 km.
15:06:32
Atlas flyby at 45,960 km.
15:59:30
Dione flyby at 291,556 km.
16:26:28
Mimas flyby at 104,263 km.
16:29:34
Saturn closest approach at 20,591 km.
16:35:00
Saturn occultation entry.
16:35:57
Saturn shadow entry.
16:51:11
Janus flyby at 228,988 km.
17:53:32
Saturn occultation exit.
17:54:47
Saturn shadow exit.
18:21:59
Ascending ring plane crossing.
18:25:34
Tethys flyby at 329,197 km.
18:30:14
Enceladus flyby at 222,027 km.
20:04:13
Calypso flyby at 109,916 km.
22:15:27
Rhea flyby at 345,303 km.
1979-09-02
18:00:33
Titan flyby at 362,962 km.
1979-10-05
Phase stop.
1979-10-05
Begin Pioneer Interstellar Mission.
1990-
Passed the orbit of Pluto.
1995-09-30
Routine daily mission operations stopped. Pioneer 11 is 6.5 billion km from Earth.
1995-11-24
Last signal received.
[33][1][34]

Current status

edit

Due to power constraints and the vast distance to the probe, the last routine contact with the spacecraft was on September 30, 1995, and the last good engineering data was received on November 24, 1995.[3][1]

As of June 24, 2024, Pioneer 11 is estimated to be 113.121 AU (16.9227×10^9 km; 10.5153×10^9 mi) from the Earth and 114.089 AU (17.0675 billion km; 10.6052 billion mi) from the Sun. It was traveling at 11.155 km/s (40,160 km/h; 24,950 mph) relative to the Sun and traveling outward at about 2.35 AU per year.[35][36] The spacecraft is heading in the direction of the constellation Scutum near the current position (June 2024) RA 18h 54m dec -8° 46' (J2000.0), close to Messier 26. In 928,000 years, it will pass within 0.25 parsecs (0.82 light-years) of the K dwarf TYC 992-192-1[37] and will pass near the star Lambda Aquilae in about four million years.[38]

Pioneer 11 has been overtaken by the two Voyager probes launched in 1977. Voyager 1 has become the most distant object built by humans and will remain so for the foreseeable future, as no probe launched since Voyager has the speed to overtake it.[39]

Pioneer anomaly

edit

Analysis of the radio tracking data from the Pioneer 10 and 11 spacecraft at distances between 20 and 70 AU from the Sun had consistently indicated the presence of a small but anomalous Doppler frequency drift. The drift can be interpreted as due to a constant acceleration of (8.74 ± 1.33) × 10−10 m/s2 directed towards the Sun. Although it was suspected that there was a systematic origin to the effect, none was found. As a result, there has been sustained interest in the nature of this so-called "Pioneer anomaly".[40] Extended analysis of mission data by Slava Turyshev and colleagues determined the source of the anomaly to be asymmetric thermal radiation and the resulting thermal recoil force acting on the face of the Pioneers away from the Sun.[41][42]

Pioneer plaque

edit
 
Pioneer plaque

Pioneer 10 and 11 both carry a gold-anodized aluminum plaque in the event that either spacecraft is ever found by intelligent lifeforms from other planetary systems. The plaques feature the nude figures of a human male and female along with several symbols that are designed to provide information about the origin of the spacecraft.[43]

Commemoration

edit

In 1991, Pioneer 11 was honored on one of 10 United States Postage Service stamps commemorating uncrewed spacecraft exploring each of the then nine planets and the Moon. Pioneer 11 was the spacecraft featured with Jupiter. Pluto was listed as "Not yet explored".[44]

edit

See also

edit

References

edit
  1. ^ a b c d e f g "Pioneer 11 - NASA Science". science.nasa.gov. NASA. Retrieved December 1, 2022.
  2. ^ a b Fimmel, Swindell & Burgess 1974, p. 19.
  3. ^ a b c "The Pioneer Missions". nasa.gov. NASA / Ames. March 27, 2007. Archived from the original on October 19, 2021. Retrieved March 3, 2015.
  4. ^ "Milestones of Flight". Smithsonian National Air and Space Museum. Archived from the original on April 15, 2012. Retrieved February 8, 2011.
  5. ^ Burrows 1990, pp. 266–268.
  6. ^ Fimmel, Swindell & Burgess 1974, p. 42.
  7. ^ M. Wade. "Pioneer 10-11". Encyclopedia Astronautica. Retrieved February 8, 2011.
  8. ^ "Pioneer 11". Weebau Space Encyclopedia. November 9, 2010. Retrieved January 12, 2012.
  9. ^ Fimmel, Swindell & Burgess 1974, pp. 42–43.
  10. ^ Fimmel, Swindell & Burgess 1974, p. 43.
  11. ^ Fimmel, Swindell & Burgess 1974, pp. 44–45.
  12. ^ Fimmel, Swindell & Burgess 1974, p. 38.
  13. ^ "Pioneer 10 & 11". Views of the Solar System. Retrieved December 20, 2018.
  14. ^ E. J. Smith. "Pioneer 11: Magnetic Fields". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  15. ^ A. Barnes. "Pioneer 11: Quadrispherical Plasma Analyzer". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  16. ^ a b c d e f g h i j Simpson 2001, p. 146.
  17. ^ J. A. Simpson. "Pioneer 11: Charged Particle Instrument (CPI)". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  18. ^ F. B. MacDonald. "Pioneer 11: Cosmic-Ray Spectra". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  19. ^ J. A. Van Allen. "Pioneer 11: Geiger Tube Telescope (GTT)". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  20. ^ R. W. Fillius. "Pioneer 11: Jovian Trapped Radiation". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  21. ^ W. H. Kinard. "Pioneer 11: Meteoroid Detectors". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  22. ^ R. K. Soberman. "Pioneer 11: Asteroid/Meteoroid Astronomy". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  23. ^ D. L. Judge. "Pioneer 11: Ultraviolet Photometry". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  24. ^ T. Gehrels. "Pioneer 11: Imaging Photopolarimeter (IPP)". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  25. ^ A. P. Ingersoll. "Pioneer 11: Infrared Radiometers". nssdc.gsfc.nasa.gov. NASA. Retrieved February 19, 2011.
  26. ^ M. H. Acuña. "Pioneer 11: Jovian Magnetic Field". nssdc.gsfc.nasa.gov. NASA. Retrieved September 24, 2013.
  27. ^ a b c J. Uri (September 3, 2019). "40 Years Ago: Pioneer 11 First to Explore Saturn". nasa.gov. NASA. Retrieved July 25, 2024.
  28. ^ "Pioneer 11 Successfully Retargeted for Saturn". New Scientist. Vol. 62. May 9, 1974. p. 294. Retrieved December 5, 2017.
  29. ^ "Pioneer 11 Is Reported to Leave Solar System". The New York Times. February 25, 1990. p. 24. Retrieved December 3, 2017.
  30. ^ a b "Farewell to a Pioneer". Science News. Vol. 148, no. 16. Society for Science. October 14, 1995. p. 250. JSTOR 4018121.
  31. ^ D. Savage; Ann Hutchison (September 28, 1995). "Pioneer 11 to End Operations after Epic Career" (TXT). nssdc.gsfc.nasa.gov. NASA / Ames. Retrieved August 7, 2011.
  32. ^ E. Howell (September 26, 2012). "Pioneer 11: Up Close with Jupiter & Saturn". Space.com. Retrieved December 10, 2017.
  33. ^ Fimmel, Swindell & Burgess 1974, pp. 61–94.
  34. ^ D. Muller. "Pioneer 11 Full Mission Timeline". Spaceflight Realtime Simulations and Information. Archived from the original on March 4, 2016. Retrieved January 9, 2011.
  35. ^ "Spacecraft escaping the Solar System". Heavens Above. Retrieved August 24, 2022.
  36. ^ "Pioneer 11 - Live Position". www.theskylive.com. Retrieved July 19, 2015.
  37. ^ C. A. L. Bailer-Jones; D. Farnocchia (April 3, 2019). "Future Stellar Flybys of the Voyager and Pioneer spacecraft". Research Notes of the AAS. 3 (4): 59. arXiv:1912.03503. Bibcode:2019RNAAS...3...59B. doi:10.3847/2515-5172/ab158e. S2CID 134524048.
  38. ^ "Hardware, Leaving the Solar System: Where are they now?". DK Eyewitness - Encyclopedia of Space and the Universe. 2001. ISBN 978-0-789-40881-5.
  39. ^ "Voyager - Mission Status". voyager.jpl.nasa.gov. NASA / JPL. Retrieved December 15, 2021.
  40. ^ R. R. Britt (October 18, 2004). "The Problem with Gravity: New Mission Would Probe Strange Puzzle". Space.com. Retrieved June 7, 2011.
  41. ^ "Pioneer Anomaly Solved!". The Planetary Society. Archived from the original on April 22, 2012. Retrieved April 20, 2012.
  42. ^ S. G. Turyshev; V. T. Toth; G. Kinsella; et al. (June 12, 2012). "Support for the Thermal Origin of the Pioneer Anomaly". Physical Review Letters. 108 (24): 241101. arXiv:1204.2507. Bibcode:2012PhRvL.108x1101T. doi:10.1103/PhysRevLett.108.241101. PMID 23004253.
  43. ^ C. Sagan; L. S. Sagan; F. Drake (February 25, 1972). "A Message from Earth". Science. 175 (4024): 881–884. Bibcode:1972Sci...175..881S. doi:10.1126/science.175.4024.881. PMID 17781060.
  44. ^ S. Kronish (October 27, 1991). "Space Launches are Featured". The Index Journal. South Carolina, USA. p. 21. Retrieved December 5, 2017 – via Newspapers.com.

Bibliography

edit
edit