Jump to content

Landsberg–Schaar relation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by LDH (talk | contribs) at 10:05, 21 November 2008 (removed a dubious statement of mine). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory and harmonic analysis, the Landsberg–Schaar relation (or identity) is the following equation, which is valid for arbitrary positive integers p and q:

Although both sides are mere finite sums, no proof by entirely finite methods has yet been found. The standard way to prove it[1] is to put , where in this identity due to Jacobi (which is essentially just a special case of the Poisson summation formula in classical harmonic analysis):

and then let .

If we let q = 1, the identity reduces to a formula for the quadratic Gauss sum modulo p.

The Landsberg–Schaar identity can be rephrased more symmetrically as

provided that we add the hypothesis that pq is an even number.

References

  1. ^ H. Dym and H.P. McKean. Fourier Series and Integrals. Academic Press, 1972.