Continuous probability distribution
The Kaniadakis Erlang distribution (or κ-Erlang Gamma distribution ) is a family of continuous statistical distributions , which is a particular case of the κ-Gamma distribution , when
α
=
1
{\displaystyle \alpha =1}
and
ν
=
n
=
{\displaystyle \nu =n=}
positive integer.[ 1] The first member of this family is the κ-exponential distribution of Type I. The κ-Erlang is a κ-deformed version of the Erlang distribution . It is one example of a Kaniadakis distribution .
Probability density function [ edit ]
The Kaniadakis κ -Erlang distribution has the following probability density function :[ 1]
f
κ
(
x
)
=
1
(
n
−
1
)
!
∏
m
=
0
n
[
1
+
(
2
m
−
n
)
κ
]
x
n
−
1
exp
κ
(
−
x
)
{\displaystyle f_{_{\kappa }}(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]x^{n-1}\exp _{\kappa }(-x)}
valid for
x
≥
0
{\displaystyle x\geq 0}
and
n
=
positive
integer
{\displaystyle n={\textrm {positive}}\,\,{\textrm {integer}}}
, where
0
≤
|
κ
|
<
1
{\displaystyle 0\leq |\kappa |<1}
is the entropic index associated with the Kaniadakis entropy .
The ordinary Erlang Distribution is recovered as
κ
→
0
{\displaystyle \kappa \rightarrow 0}
.
Cumulative distribution function [ edit ]
The cumulative distribution function of κ -Erlang distribution assumes the form:[ 1]
F
κ
(
x
)
=
1
(
n
−
1
)
!
∏
m
=
0
n
[
1
+
(
2
m
−
n
)
κ
]
∫
0
x
z
n
−
1
exp
κ
(
−
z
)
d
z
{\displaystyle F_{\kappa }(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}
valid for
x
≥
0
{\displaystyle x\geq 0}
, where
0
≤
|
κ
|
<
1
{\displaystyle 0\leq |\kappa |<1}
. The cumulative Erlang distribution is recovered in the classical limit
κ
→
0
{\displaystyle \kappa \rightarrow 0}
.
Survival distribution and hazard functions [ edit ]
The survival function of the κ -Erlang distribution is given by:
S
κ
(
x
)
=
1
−
1
(
n
−
1
)
!
∏
m
=
0
n
[
1
+
(
2
m
−
n
)
κ
]
∫
0
x
z
n
−
1
exp
κ
(
−
z
)
d
z
{\displaystyle S_{\kappa }(x)=1-{\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}
The survival function of the κ -Erlang distribution enables the determination of hazard functions in closed form through the solution of the κ -rate equation:
S
κ
(
x
)
d
x
=
−
h
κ
S
κ
(
x
)
{\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}
where
h
κ
{\displaystyle h_{\kappa }}
is the hazard function.
Family distribution [ edit ]
A family of κ -distributions arises from the κ -Erlang distribution, each associated with a specific value of
n
{\displaystyle n}
, valid for
x
≥
0
{\displaystyle x\geq 0}
and
0
≤
|
κ
|
<
1
{\displaystyle 0\leq |\kappa |<1}
. Such members are determined from the κ -Erlang cumulative distribution, which can be rewritten as:
F
κ
(
x
)
=
1
−
[
R
κ
(
x
)
+
Q
κ
(
x
)
1
+
κ
2
x
2
]
exp
κ
(
−
x
)
{\displaystyle F_{\kappa }(x)=1-\left[R_{\kappa }(x)+Q_{\kappa }(x){\sqrt {1+\kappa ^{2}x^{2}}}\right]\exp _{\kappa }(-x)}
where
Q
κ
(
x
)
=
N
κ
∑
m
=
0
n
−
3
(
m
+
1
)
c
m
+
1
x
m
+
N
κ
1
−
n
2
κ
2
x
n
−
1
{\displaystyle Q_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n-3}\left(m+1\right)c_{m+1}x^{m}+{\frac {N_{\kappa }}{1-n^{2}\kappa ^{2}}}x^{n-1}}
R
κ
(
x
)
=
N
κ
∑
m
=
0
n
c
m
x
m
{\displaystyle R_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n}c_{m}x^{m}}
with
N
κ
=
1
(
n
−
1
)
!
∏
m
=
0
n
[
1
+
(
2
m
−
n
)
κ
]
{\displaystyle N_{\kappa }={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]}
c
n
=
n
κ
2
1
−
n
2
κ
2
{\displaystyle c_{n}={\frac {n\kappa ^{2}}{1-n^{2}\kappa ^{2}}}}
c
n
−
1
=
0
{\displaystyle c_{n-1}=0}
c
n
−
2
=
n
−
1
(
1
−
n
2
κ
2
)
[
1
−
(
n
−
2
)
2
κ
2
]
{\displaystyle c_{n-2}={\frac {n-1}{(1-n^{2}\kappa ^{2})[1-(n-2)^{2}\kappa ^{2}]}}}
c
m
=
(
m
+
1
)
(
m
+
2
)
1
−
m
2
κ
2
c
m
+
2
for
0
≤
m
≤
n
−
3
{\displaystyle c_{m}={\frac {(m+1)(m+2)}{1-m^{2}\kappa ^{2}}}c_{m+2}\quad {\textrm {for}}\quad 0\leq m\leq n-3}
The first member (
n
=
1
{\displaystyle n=1}
) of the κ -Erlang family is the κ -Exponential distribution of type I, in which the probability density function and the cumulative distribution function are defined as:
f
κ
(
x
)
=
(
1
−
κ
2
)
exp
κ
(
−
x
)
{\displaystyle f_{_{\kappa }}(x)=(1-\kappa ^{2})\exp _{\kappa }(-x)}
F
κ
(
x
)
=
1
−
(
1
+
κ
2
x
2
+
κ
2
x
)
exp
k
(
−
x
)
{\displaystyle F_{\kappa }(x)=1-{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa ^{2}x{\Big )}\exp _{k}({-x)}}
The second member (
n
=
2
{\displaystyle n=2}
) of the κ -Erlang family has the probability density function and the cumulative distribution function defined as:
f
κ
(
x
)
=
(
1
−
4
κ
2
)
x
exp
κ
(
−
x
)
{\displaystyle f_{_{\kappa }}(x)=(1-4\kappa ^{2})\,x\,\exp _{\kappa }(-x)}
F
κ
(
x
)
=
1
−
(
2
κ
2
x
2
+
1
+
x
1
+
κ
2
x
2
)
exp
k
(
−
x
)
{\displaystyle F_{\kappa }(x)=1-\left(2\kappa ^{2}x^{2}+1+x{\sqrt {1+\kappa ^{2}x^{2}}}\right)\exp _{k}({-x)}}
The second member (
n
=
3
{\displaystyle n=3}
) has the probability density function and the cumulative distribution function defined as:
f
κ
(
x
)
=
1
2
(
1
−
κ
2
)
(
1
−
9
κ
2
)
x
2
exp
κ
(
−
x
)
{\displaystyle f_{_{\kappa }}(x)={\frac {1}{2}}(1-\kappa ^{2})(1-9\kappa ^{2})\,x^{2}\,\exp _{\kappa }(-x)}
F
κ
(
x
)
=
1
−
{
3
2
κ
2
(
1
−
κ
2
)
x
3
+
x
+
[
1
+
1
2
(
1
−
κ
2
)
x
2
]
1
+
κ
2
x
2
}
exp
κ
(
−
x
)
{\displaystyle F_{\kappa }(x)=1-\left\{{\frac {3}{2}}\kappa ^{2}(1-\kappa ^{2})x^{3}+x+\left[1+{\frac {1}{2}}(1-\kappa ^{2})x^{2}\right]{\sqrt {1+\kappa ^{2}x^{2}}}\right\}\exp _{\kappa }(-x)}
The κ -Exponential distribution of type I is a particular case of the κ -Erlang distribution when
n
=
1
{\displaystyle n=1}
;
A κ -Erlang distribution corresponds to am ordinary exponential distribution when
κ
=
0
{\displaystyle \kappa =0}
and
n
=
1
{\displaystyle n=1}
;
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families