formules en 3D
( λ , G ) {\displaystyle (\lambda ,G)}
( E , G ) {\displaystyle (E,G)}
( K , λ ) {\displaystyle (K,\lambda )}
( K , G ) {\displaystyle (K,G)}
( λ , ν ) {\displaystyle (\lambda ,\nu )}
( G , ν ) {\displaystyle (G,\nu )}
( E , ν ) {\displaystyle (E,\nu )}
( K , ν ) {\displaystyle (K,\nu )}
( K , E ) {\displaystyle (K,E)}
( M , G ) {\displaystyle (M,G)}
K [ P a ] = {\displaystyle K\,[\mathrm {Pa} ]=}
λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}}
E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}}
λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}
2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}
E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}}
M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}}
E [ P a ] = {\displaystyle E\,[\mathrm {Pa} ]=}
G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}
9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}
9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}}
λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}
2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,}
3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,}
G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}}
λ [ P a ] = {\displaystyle \lambda \,[\mathrm {Pa} ]=}
G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}}
K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}}
2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}}
E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}
3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}}
3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}
M − 2 G {\displaystyle M-2G}
G [ P a ] = {\displaystyle G\,[\mathrm {Pa} ]=}
3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}}
λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}
E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}}
3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}
3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}}
ν [ 1 ] = {\displaystyle \nu \,[1]=}
λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}
E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1}
λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}}
3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}
3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}}
M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}}
M [ P a ] = {\displaystyle M\,[\mathrm {Pa} ]=}
λ + 2 G {\displaystyle \lambda +2G}
G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}}
3 K − 2 λ {\displaystyle 3K-2\lambda \,}
K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}}
λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}
2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}
E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}
3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}
3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}
formules en 2D
( λ 2 D , G 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },G_{\mathrm {2D} })}
( E 2 D , G 2 D ) {\displaystyle (E_{\mathrm {2D} },G_{\mathrm {2D} })}
( K 2 D , λ 2 D ) {\displaystyle (K_{\mathrm {2D} },\lambda _{\mathrm {2D} })}
( K 2 D , G 2 D ) {\displaystyle (K_{\mathrm {2D} },G_{\mathrm {2D} })}
( λ 2 D , ν 2 D ) {\displaystyle (\lambda _{\mathrm {2D} },\nu _{\mathrm {2D} })}
( G 2 D , ν 2 D ) {\displaystyle (G_{\mathrm {2D} },\nu _{\mathrm {2D} })}
( E 2 D , ν 2 D ) {\displaystyle (E_{\mathrm {2D} },\nu _{\mathrm {2D} })}
( K 2 D , ν 2 D ) {\displaystyle (K_{\mathrm {2D} },\nu _{\mathrm {2D} })}
( K 2 D , E 2 D ) {\displaystyle (K_{\mathrm {2D} },E_{\mathrm {2D} })}
( M 2 D , G 2 D ) {\displaystyle (M_{\mathrm {2D} },G_{\mathrm {2D} })}
K 2 D [ N / m ] = {\displaystyle K_{\mathrm {2D} }\,[\mathrm {N/m} ]=}
λ 2 D + G 2 D {\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}
G 2 D E 2 D 4 G 2 D − E 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }E_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
λ 2 D ( 1 + ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}
G 2 D ( 1 + ν 2 D ) 1 − ν 2 D {\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}
E 2 D 2 ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}
M 2 D − G 2 D {\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}
E 2 D [ N / m ] = {\displaystyle E_{\mathrm {2D} }\,[\mathrm {N/m} ]=}
4 G 2 D ( λ 2 D + G 2 D ) λ 2 D + 2 G 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}
4 K 2 D ( K 2 D − λ 2 D ) 2 K 2 D − λ 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}
4 K 2 D G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}
λ 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}
2 G 2 D ( 1 + ν 2 D ) {\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}
2 K 2 D ( 1 − ν 2 D ) {\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}
4 G 2 D ( M 2 D − G 2 D ) M 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}
λ 2 D [ N / m ] = {\displaystyle \lambda _{\mathrm {2D} }\,[\mathrm {N/m} ]=}
2 G 2 D ( E 2 D − 2 G 2 D ) 4 G 2 D − E 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
K 2 D − G 2 D {\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}
2 G 2 D ν 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
E 2 D ν 2 D ( 1 + ν 2 D ) ( 1 − ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}
2 K 2 D ν 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
2 K 2 D ( 2 K 2 D − E 2 D ) 4 K 2 D − E 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
M 2 D − 2 G 2 D {\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }}
G 2 D [ N / m ] = {\displaystyle G_{\mathrm {2D} }\,[\mathrm {N/m} ]=}
K 2 D − λ 2 D {\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
λ 2 D ( 1 − ν 2 D ) 2 ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}
E 2 D 2 ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}
K 2 D ( 1 − ν 2 D ) 1 + ν 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}
K 2 D E 2 D 4 K 2 D − E 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
ν 2 D [ 1 ] = {\displaystyle \nu _{\mathrm {2D} }\,[1]=}
λ 2 D λ 2 D + 2 G 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}
E 2 D 2 G 2 D − 1 {\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}
λ 2 D 2 K 2 D − λ 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}
K 2 D − G 2 D K 2 D + G 2 D {\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}
2 K 2 D − E 2 D 2 K 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}
M 2 D − 2 G 2 D M 2 D {\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}
M 2 D [ N / m ] = {\displaystyle M_{\mathrm {2D} }\,[\mathrm {N/m} ]=}
λ 2 D + 2 G 2 D {\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}
4 G 2 D 2 4 G 2 D − E 2 D {\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
2 K 2 D − λ 2 D {\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}
K 2 D + G 2 D {\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}
λ 2 D ν 2 D {\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}
2 G 2 D 1 − ν 2 D {\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}
E 2 D ( 1 − ν 2 D ) ( 1 + ν 2 D ) {\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1-\nu _{\mathrm {2D} })(1+\nu _{\mathrm {2D} })}}}
2 K 2 D 1 + ν 2 D {\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}
4 K 2 D 2 4 K 2 D − E 2 D {\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}
Ceci est la documentation du modèle {{Palette Modules élastiques}}.
L’utilisation de cette palette se fait par l’ajout, en fin de page, avant les portails, du code {{Palette|Modules élastiques}}, ou en l’ajoutant à une ou des palettes existantes sous la forme {{Palette|nom-palette-1|Modules élastiques}}.
{{Palette|Modules élastiques}}
{{Palette|nom-palette-1|Modules élastiques}}
Il est déconseillé d’utiliser la forme {{Palette Modules élastiques}}, qui ne permet pas, contrairement au modèle {{Palette}}, de séparer correctement la ou les palettes du texte qui précède par de l’espace vide.
{{Palette Modules élastiques}}
La matrice de rigidité (9 par 9, ou 6 par 6 dans la notation de Voigt) dans la loi de Hooke (en 3D) peut se paramétrer par seulement deux nombres dans le cas des matériaux homogènes et isotropes. On peut choisir la paire que l'on préfère parmi les modules d'élasticité ci-dessus. Certaines des conversions possibles sont listées dans la table.
La documentation de ce modèle est générée par le modèle {{Documentation palette}}.Elle est directement incluse dans l'appel de ce dernier. Si cette page est protégée, veuillez transférer le contenu de la documentation vers sa sous-page dédiée.Les éditeurs peuvent travailler dans le bac à sable (créer) et la page de test (créer).Voir les statistiques d'utilisation du modèle sur l'outil wstat.