This file was created from the outputed csv from the .py file using this csv to markdown translator.
Unfortunately, some of the differences related to extra "\n" are not shown here. To see this you should run the python file and explore the final_dataframe
.
index | description | filepath |
---|---|---|
AgglomerativeClustering | Agglomerative clustering samples instead of features. | sklearn\cluster_agglomerative.py |
AgglomerativeClustering | Recursively merges the pair of clusters that minimally increases a given linkage distance. | sklearn\cluster_affinity_propagation.py |
ClassifierChain | A multi-label model that arranges binary classifiers into a chain. | sklearn\multioutput.py |
ClassifierChain | Equivalent for classification. | sklearn\multioutput.py |
ComplementNB | Complement Naive Bayes classifier. | sklearn\naive_bayes.py |
ComplementNB | The Complement Naive Bayes classifier described in Rennie et al. (2003). | sklearn\naive_bayes.py |
ComplementNB | Complement Naive Bayes classifier. | sklearn\naive_bayes.py |
ComplementNB | Complement Naive Bayes classifier. | sklearn\naive_bayes.py |
ConfusionMatrixDisplay.from_estimator | Plot the confusion matrix given an estimator, the data, and the label. | sklearn\metrics_plot\confusion_matrix.py |
ConfusionMatrixDisplay.from_estimator | Plot the confusion matrix given an estimator, the data, and the label. | sklearn\inspection_plot\decision_boundary.py |
ConfusionMatrixDisplay.from_estimator | Plot the confusion matrix given an estimator, the data, and the label. | sklearn\metrics_classification.py |
ExtraTreesClassifier | An extra-trees classifier with random splits. | sklearn\ensemble_forest.py |
ExtraTreesClassifier | An extra-trees classifier. | sklearn\ensemble_forest.py |
ExtraTreesRegressor | An extra-trees regressor with random splits. | sklearn\ensemble_forest.py |
ExtraTreesRegressor | An extra-trees regressor. | sklearn\ensemble_forest.py |
FeatureAgglomeration | Similar to AgglomerativeClustering, but recursively merges features instead of samples. | sklearn\cluster_affinity_propagation.py |
FeatureAgglomeration | Agglomerative clustering but for features instead of samples. | sklearn\cluster_agglomerative.py |
GaussianNB | Gaussian Naive Bayes. | sklearn\naive_bayes.py |
GaussianNB | Gaussian Naive Bayes (GaussianNB). | sklearn\naive_bayes.py |
GaussianNB | Gaussian Naive Bayes. | sklearn\naive_bayes.py |
GradientBoostingRegressor | Exact gradient boosting method that does not scale as good on datasets with a large number of samples. | sklearn\ensemble_hist_gradient_boosting\gradient_boosting.py |
GradientBoostingRegressor | Gradient Boosting Classification Tree. | sklearn\ensemble_weight_boosting.py |
IncrementalPCA | Incremental principal components analysis. | sklearn\decomposition_truncated_svd.py |
IncrementalPCA | Incremental principal components analysis. | sklearn\decomposition_sparse_pca.py |
IncrementalPCA | Incremental principal components analysis (IPCA). | sklearn\decomposition_fastica.py |
IncrementalPCA | Incremental Principal Component Analysis. | sklearn\decomposition_kernel_pca.py |
KNeighborsClassifier | Classifier implementing the k-nearest neighbors vote. | sklearn\neighbors_unsupervised.py |
KNeighborsClassifier | Classifier based on the k-nearest neighbors. | sklearn\neighbors_regression.py |
KNeighborsClassifier | Classifier implementing the k-nearest neighbors vote. | sklearn\neighbors_regression.py |
KNeighborsClassifier | Classifier implementing the k-nearest neighbors vote. | sklearn\neighbors_classification.py |
KernelPCA | Kernel Principal component analysis. | sklearn\decomposition_truncated_svd.py |
KernelPCA | Kernel Principal Component Analysis. | sklearn\decomposition_pca.py |
KernelPCA | Kernel Principal component analysis (KPCA). | sklearn\decomposition_incremental_pca.py |
KernelPCA | Kernel Principal component analysis (KPCA). | sklearn\decomposition_fastica.py |
LabelBinarizer | Binarizes labels in a one-vs-all fashion. | sklearn\preprocessing_encoders.py |
LabelBinarizer | Binarize labels in a one-vs-all fashion. | sklearn\preprocessing_function_transformer.py |
Lars | Least Angle Regression model. | sklearn\linear_model_stochastic_gradient.py |
Lars | Least Angle Regression model a.k.a. LAR. | sklearn\linear_model_omp.py |
Lars | Least Angle Regression model a.k.a. LAR. | sklearn\linear_model_omp.py |
Lars | Least Angle Regression model a.k.a. LAR. | sklearn\linear_model_least_angle.py |
Lars | Least Angle Regression model a.k.a. LAR. | sklearn\linear_model_least_angle.py |
Lasso | The Lasso is a linear model that estimates sparse coefficients. | sklearn\linear_model_coordinate_descent.py |
Lasso | The Lasso is a linear model that estimates sparse coefficients. | sklearn\linear_model_coordinate_descent.py |
Lasso | The Lasso is a linear model that estimates sparse coefficients with l1 regularization. | sklearn\linear_model_base.py |
Lasso | Linear Model trained with L1 prior as regularizer (aka the Lasso). | sklearn\linear_model_least_angle.py |
Lasso | Linear Model trained with L1 prior as regularizer (aka the Lasso). | sklearn\linear_model_least_angle.py |
Lasso | The Lasso is a linear model that estimates sparse coefficients with l1 regularization. | sklearn\linear_model_quantile.py |
Lasso | Linear Model trained with L1 prior as regularizer. | sklearn\linear_model_stochastic_gradient.py |
Lasso | Linear Model trained with L1 prior as regularizer (aka the Lasso). | sklearn\linear_model_least_angle.py |
Lasso | Linear Model trained with L1 prior as regularizer (aka the Lasso). | sklearn\linear_model_least_angle.py |
LassoCV | Lasso alpha parameter by cross-validation. | sklearn\linear_model_coordinate_descent.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. | sklearn\linear_model_coordinate_descent.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. | sklearn\linear_model_coordinate_descent.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. LassoLarsCV: Cross-validated Lasso, using the LARS algorithm. | sklearn\linear_model_least_angle.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. | sklearn\linear_model_least_angle.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. | sklearn\linear_model_least_angle.py |
LassoCV | Lasso linear model with iterative fitting along a regularization path. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_omp.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. LassoLarsCV: Cross-validated Lasso, using the LARS algorithm. | sklearn\linear_model_least_angle.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_coordinate_descent.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_omp.py |
LassoLars | Lasso model fit with Least Angle Regression a.k.a. Lars. | sklearn\linear_model_coordinate_descent.py |
LassoLars | Lasso Path along the regularization parameter usingLARS algorithm. | sklearn\linear_model_coordinate_descent.py |
LassoLarsCV | Lasso least angle parameter algorithm by cross-validation. | sklearn\linear_model_coordinate_descent.py |
LassoLarsCV | Cross-validated Lasso model fit with Least Angle Regression. | sklearn\linear_model_omp.py |
LassoLarsCV | Cross-validated Lasso, using the LARS algorithm. | sklearn\linear_model_least_angle.py |
LassoLarsCV | Cross-validated Lasso, using the LARS algorithm. | sklearn\linear_model_least_angle.py |
LassoLarsCV | Cross-validated Lasso using the LARS algorithm. | sklearn\linear_model_coordinate_descent.py |
MiniBatchDictionaryLearning | A faster, less accurate, version of the dictionary learning algorithm. | sklearn\decomposition_dict_learning.py |
MiniBatchDictionaryLearning | A faster, less accurate, version of the dictionary learning algorithm. | sklearn\decomposition_dict_learning.py |
MiniBatchDictionaryLearning | A faster, less accurate version of the dictionary learning algorithm. | sklearn\decomposition_dict_learning.py |
MiniBatchSparsePCA | Mini-batch Sparse Principal Components Analysis. | sklearn\decomposition_nmf.py |
MiniBatchSparsePCA | Mini batch variant of SparsePCA that is faster but less accurate. |
sklearn\decomposition_sparse_pca.py |
MiniBatchSparsePCA | Mini-batch Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
MiniBatchSparsePCA | Mini-batch Sparse Principal Components Analysis. | sklearn\decomposition_fastica.py |
MiniBatchSparsePCA | Mini-batch Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
MiniBatchSparsePCA | Mini-batch Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
MultiTaskElasticNet | Multi-task ElasticNet model trained with L1/L2 mixed-norm \ as regularizer. | sklearn\linear_model_coordinate_descent.py |
MultiTaskElasticNet | Multi-task L1/L2 ElasticNet with built-in cross-validation. | sklearn\linear_model_coordinate_descent.py |
MultiTaskElasticNet | Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer. | sklearn\linear_model_coordinate_descent.py |
MultiTaskElasticNetCV | Multi-task L1/L2 ElasticNet with built-in cross-validation. | sklearn\linear_model_coordinate_descent.py |
MultiTaskElasticNetCV | Multi-task L1/L2 ElasticNet with built-in cross-validation. | sklearn\linear_model_coordinate_descent.py |
NMF | Non-negative matrix factorization. | sklearn\decomposition_nmf.py |
NMF | Non-Negative Matrix Factorization. | sklearn\decomposition_truncated_svd.py |
NMF | Non-Negative Matrix Factorization. | sklearn\decomposition_kernel_pca.py |
NearestNeighbors | Unsupervised learner for implementing neighbor searches. | sklearn\neighbors_regression.py |
NearestNeighbors | Regression based on nearest neighbors. | sklearn\neighbors_regression.py |
OrdinalEncoder | Performs an ordinal (integer) encoding of the categorical features. | sklearn\preprocessing_encoders.py |
OrdinalEncoder | Encode categorical features using an ordinal encoding scheme. | sklearn\preprocessing_label.py |
OrthogonalMatchingPursuit | Orthogonal Matching Pursuit model (OMP). | sklearn\linear_model_omp.py |
OrthogonalMatchingPursuit | Orthogonal Matching Pursuit model (OMP). | sklearn\linear_model_omp.py |
OrthogonalMatchingPursuit | Orthogonal Matching Pursuit model. | sklearn\linear_model_omp.py |
PCA | Principal component analysis. | sklearn\decomposition_sparse_pca.py |
PCA | Principal component analysis (PCA). | sklearn\decomposition_fastica.py |
PCA | Principal component analysis. | sklearn\decomposition_nmf.py |
PCA | Principal Component Analysis implementation. | sklearn\decomposition_sparse_pca.py |
PCA | Principal Component Analysis. | sklearn\decomposition_kernel_pca.py |
PCA | Principal component analysis (PCA). | sklearn\decomposition_incremental_pca.py |
PrecisionRecallDisplay.from_estimator | Plot Precision Recall Curve given a binary classifier. | sklearn\metrics_ranking.py |
PrecisionRecallDisplay.from_estimator | Plot precision-recall curve given an estimator and some data. | sklearn\metrics_classification.py |
PrecisionRecallDisplay.from_estimator | Plot precision-recall curve given an estimator and some data. | sklearn\metrics_classification.py |
PrecisionRecallDisplay.from_estimator | Plot Precision Recall Curve given a binary classifier. | sklearn\metrics_plot\precision_recall_curve.py |
PrecisionRecallDisplay.from_predictions | Plot Precision Recall Curve using predictions from a binary classifier. | sklearn\metrics_ranking.py |
PrecisionRecallDisplay.from_predictions | Plot precision-recall curve given binary class predictions. | sklearn\metrics_classification.py |
RFECV | Recursive feature elimination with built-in cross-validated selection of the best number of features. | sklearn\feature_selection_rfe.py |
RFECV | Recursive feature elimination based on importance weights, with automatic selection of the number of features. | sklearn\feature_selection_sequential.py |
RFECV | Recursive feature elimination with built-in cross-validated selection of the best number of features. | sklearn\feature_selection_from_model.py |
RadiusNeighborsRegressor | Regression based on neighbors within a fixed radius. | sklearn\neighbors_regression.py |
RadiusNeighborsRegressor | Regression based on neighbors within a fixed radius. | sklearn\neighbors_classification.py |
RadiusNeighborsRegressor | Regression based on neighbors within a fixed radius. | sklearn\neighbors_unsupervised.py |
RandomForestClassifier | A random forest classifier with optimal splits. | sklearn\ensemble_forest.py |
RandomForestClassifier | A random forest classifier with optimal splits. | sklearn\ensemble_forest.py |
RandomForestClassifier | A random forest classifier. | sklearn\ensemble_forest.py |
RandomForestClassifier | A meta-estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. | sklearn\ensemble_gb.py |
RandomForestClassifier | A meta-estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. | sklearn\ensemble_hist_gradient_boosting\gradient_boosting.py |
RandomForestRegressor | A meta-estimator that fits a number of decision tree regressors on various sub-samples of the dataset and uses averaging to improve the statistical performance and control over-fitting. | sklearn\ensemble_hist_gradient_boosting\gradient_boosting.py |
RandomForestRegressor | A random forest regressor. sklearn.tree.ExtraTreeClassifier: An extremely randomized tree classifier. | sklearn\ensemble_forest.py |
RegressorChain | Equivalent for regression. | sklearn\multioutput.py |
RegressorChain | A multi-label model that arranges regressions into a chain. | sklearn\multioutput.py |
Ridge | Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with l2 regularization. | sklearn\linear_model_base.py |
Ridge | Ridge regression. | sklearn\linear_model_ridge.py |
Ridge | Ridge regression. | sklearn\linear_model_ridge.py |
Ridge | Ridge regression. | sklearn\linear_model_ridge.py |
Ridge | Linear least squares with l2 regularization. | sklearn\linear_model_stochastic_gradient.py |
RidgeClassifier | Ridge classifier. | sklearn\linear_model_ridge.py |
RidgeClassifier | Ridge classifier. | sklearn\linear_model_ridge.py |
RidgeClassifier | Classifier based on ridge regression on {-1, 1} labels. | sklearn\linear_model_ridge.py |
RocCurveDisplay.from_estimator | Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data. | sklearn\metrics_ranking.py |
RocCurveDisplay.from_estimator | ROC Curve visualization given an estimator and some data. | sklearn\metrics_plot\roc_curve.py |
RocCurveDisplay.from_estimator | Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data. | sklearn\metrics_ranking.py |
RocCurveDisplay.from_estimator | Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data. | sklearn\metrics_plot\roc_curve.py |
RocCurveDisplay.from_predictions | Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values. | sklearn\metrics_plot\roc_curve.py |
RocCurveDisplay.from_predictions | Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values. det_curve: Compute error rates for different probability thresholds. | sklearn\metrics_ranking.py |
RocCurveDisplay.from_predictions | ROC Curve visualization given the probabilities of scores of a classifier. | sklearn\metrics_plot\roc_curve.py |
SGDClassifier | Incrementally trained logistic regression. | sklearn\linear_model_passive_aggressive.py |
SGDClassifier | Incrementally trained logistic regression (when given the parameter loss="log" ). |
sklearn\linear_model_logistic.py |
SelectPercentile | Select features based on percentile of the highest scores. | sklearn\feature_selection_univariate_selection.py |
SelectPercentile | Select features based on percentile of the highest scores. | sklearn\feature_selection_univariate_selection.py |
SelectPercentile | Select features based on percentile of the highest scores. | sklearn\feature_selection_univariate_selection.py |
SelectPercentile | Select features based on percentile of the highest scores. | sklearn\feature_selection_univariate_selection.py |
SelectPercentile | Select features according to a percentile of the highest scores. | sklearn\feature_selection_variance_threshold.py |
SimpleImputer | Univariate imputation of missing values. | sklearn\impute_base.py |
SimpleImputer | Univariate imputer for completing missing values with simple strategies. | sklearn\impute_iterative.py |
SimpleImputer | Univariate imputer for completing missing values with simple strategies. | sklearn\impute_knn.py |
SkewedChi2Sampler | Approximate feature map for "skewed chi-squared" kernel. | sklearn\kernel_approximation.py |
SkewedChi2Sampler | Approximate feature map for "skewed chi-squared" kernel. | sklearn\kernel_approximation.py |
SkewedChi2Sampler | Approximate feature map for "skewed chi-squared" kernel. | sklearn\kernel_approximation.py |
SkewedChi2Sampler | Approximate feature map for "skewed chi-squared" kernel. | sklearn\kernel_approximation.py |
SparsePCA | Sparse Principal Components Analysis. | sklearn\decomposition_sparse_pca.py |
SparsePCA | Sparse Principal Component Analysis. | sklearn\decomposition_pca.py |
SparsePCA | Sparse Principal Components Analysis. | sklearn\decomposition_nmf.py |
SparsePCA | Sparse Principal Component Analysis. | sklearn\decomposition_kernel_pca.py |
SparsePCA | Sparse Principal Components Analysis (SparsePCA). | sklearn\decomposition_incremental_pca.py |
SparsePCA | Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
SparsePCA | Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
SparsePCA | Sparse Principal Components Analysis. | sklearn\decomposition_dict_learning.py |
StandardScaler | Perform standardization that is faster, but less robust to outliers. | sklearn\preprocessing_data.py |
StandardScaler | Standardize features by removing the mean and scaling to unit variance. | sklearn\preprocessing_function_transformer.py |
accuracy_score | Compute the accuracy score. By default, the function will return the fraction of correct predictions divided by the total number of predictions. | sklearn\metrics_classification.py |
accuracy_score | Compute the accuracy score. By default, the function will return the fraction of correct predictions divided by the total number of predictions. | sklearn\metrics_classification.py |
accuracy_score | Function for calculating the accuracy score. | sklearn\metrics_classification.py |
average_precision_score | Compute average precision from prediction scores. det_curve: Compute error rates for different probability thresholds. | sklearn\metrics_ranking.py |
average_precision_score | Compute average precision from prediction scores. | sklearn\metrics_ranking.py |
average_precision_score | Compute average precision (AP) from prediction scores. | sklearn\metrics_classification.py |
average_precision_score | Area under the precision-recall curve. | sklearn\metrics_ranking.py |
balanced_accuracy_score | Compute the balanced accuracy to deal with imbalanced datasets. | sklearn\metrics_classification.py |
balanced_accuracy_score | Compute balanced accuracy to deal with imbalanced datasets. | sklearn\metrics_classification.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. mutual_info_classif: Mutual information for a discrete target. | sklearn\feature_selection_univariate_selection.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. | sklearn\feature_selection_univariate_selection.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. | sklearn\feature_selection_univariate_selection.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. | sklearn\feature_selection_univariate_selection.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. | sklearn\feature_selection_univariate_selection.py |
chi2 | Chi-squared stats of non-negative features for classification tasks. | sklearn\feature_selection_univariate_selection.py |
lars_path | Regularization path using LARS. | sklearn\linear_model_coordinate_descent.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_coordinate_descent.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_least_angle.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_omp.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_omp.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_omp.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_omp.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_coordinate_descent.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_least_angle.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_least_angle.py |
lars_path | Compute Least Angle Regression or Lasso path using LARS algorithm. | sklearn\linear_model_least_angle.py |
lars_path_gram | Compute LARS path. | sklearn\linear_model_least_angle.py |
lars_path_gram | Compute LARS path in the sufficient stats mode. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_least_angle.py |
lasso_path | Compute Lasso path with coordinate descent. | sklearn\linear_model_coordinate_descent.py |
lasso_path | Regularization path using Lasso. | sklearn\linear_model_coordinate_descent.py |
mutual_info_regression | Mutual information for a continuous target. | sklearn\feature_selection_univariate_selection.py |
mutual_info_regression | Mutual information for a continuous target. | sklearn\feature_selection_univariate_selection.py |
mutual_info_regression | Mutual information for a contnuous target. | sklearn\feature_selection_univariate_selection.py |
mutual_info_regression | Mutual information for a continuous target. | sklearn\feature_selection_univariate_selection.py |
orthogonal_mp_gram | Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. | sklearn\linear_model_omp.py |
orthogonal_mp_gram | Solve OMP problems using Gram matrix and the product X.T * y. | sklearn\linear_model_omp.py |
orthogonal_mp_gram | Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. | sklearn\linear_model_omp.py |
precision_recall_fscore_support | Compute precision, recall, F-measure and support for each class. | sklearn\metrics_classification.py |
precision_recall_fscore_support | Compute the precision, recall, F-score, and support. | sklearn\metrics_classification.py |
precision_recall_fscore_support | Compute the precision, recall, F-score, and support. | sklearn\metrics_classification.py |
precision_recall_fscore_support | Compute precision, recall, F-measure and support for each class. | sklearn\metrics_classification.py |
precision_score | Compute the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. |
sklearn\metrics_classification.py |
precision_score | Compute the precision score. | sklearn\metrics_classification.py |
recall_score | Compute the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. |
sklearn\metrics_classification.py |
recall_score | Compute the recall score. | sklearn\metrics_classification.py |