Hi,this is our new work about virtual try-on: PG-VTON: A Novel Image-Based Virtual Try-On Method via Progressive Inference Paradigm.
This paper has been published on TMM 2024 and is available [here].
conda create -n pgvton python=3.7
conda activate pgvton
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install -r requirements.txt
We use the processed version of VITON dataset.
The priors of human image parser and pose can be generated by Grapy-ML and Densepose
The dataset structure is recommended as follows. For the testing dataset, you can randomly shuffle the cloth order.
|+-cloth
| +-000001_1.jpg
|+-cloth-mask
| +-000001_1.jpg
|+-densepose
| +-000001_0.npy
|+-image
| +-000001_0.jpg
|+-image-parse
| +-sg
| +-000001_0.png
| +-sg_vis
| +-000001_0.png
python -main.py --data_dir your_dir --mode train --submodel TPIM --vis_dir TPIM_vis --checkpoint_dir TPIM_checkpoint --loss_dir TPIM_ loss --g_lr 0.0001
python -main.py --data_dir your_dir --mode train --submodel PTM --vis_dir PTM_vis --checkpoint_dir PTM_checkpoint --loss_dir PTM_ loss --g_lr 0.0002
python -main.py --data_dir your_dir --mode train --submodel RSIM --vis_dir RSIM_vis --checkpoint_dir RSIM_checkpoint --loss_dir RSIM_ loss --g_lr 0.00001
python -main.py --data_dir your_dir --mode eval --submodel TPIM
python -main.py --data_dir your_dir --mode eval --submodel PTM
python -main.py --data_dir your_dir --mode eval --submodel RSIM
python -composition.py
Please consider citing our work if you find it useful for your research:
@ARTICLE{10400859,
author={Fang, Naiyu and Qiu, Lemiao and Zhang, Shuyou and Wang, Zili and Hu, Kerui},
journal={IEEE Transactions on Multimedia},
title={PG-VTON: A Novel Image-Based Virtual Try-On Method via Progressive Inference Paradigm},
year={2024},
volume={26},
number={},
pages={6595-6608},[README.md](README.md)
keywords={Clothing;Skin;Task analysis;Shape;Training;Deformation;Transformers;Virtual try-on;PG-VTON;Garment warping;Skin inpainting;Vision Transformer},
doi={10.1109/TMM.2024.3354622}}