Skip to content

Add algorithm for the Mandelbrot set #2155

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Apr 24, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
192 changes: 192 additions & 0 deletions Others/Mandelbrot.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
package Others;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;

/**
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n +
* c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the
* Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the
* absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a +
* b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a
* color-coding to indicate after how many steps in the series the numbers outside the set cross the
* divergence threshold. Images of the Mandelbrot set exhibit an elaborate and infinitely
* complicated boundary that reveals progressively ever-finer recursive detail at increasing
* magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted
* from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also
* https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
*/
public class Mandelbrot {

public static void main(String[] args) {
// Test black and white
BufferedImage blackAndWhiteImage = getImage(800, 600, -0.6, 0, 3.2, 50, false);

// Pixel outside the Mandelbrot set should be white.
assert blackAndWhiteImage.getRGB(0, 0) == new Color(255, 255, 255).getRGB();

// Pixel inside the Mandelbrot set should be black.
assert blackAndWhiteImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();

// Test color-coding
BufferedImage coloredImage = getImage(800, 600, -0.6, 0, 3.2, 50, true);

// Pixel distant to the Mandelbrot set should be red.
assert coloredImage.getRGB(0, 0) == new Color(255, 0, 0).getRGB();

// Pixel inside the Mandelbrot set should be black.
assert coloredImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();

// Save image
try {
ImageIO.write(coloredImage, "png", new File("Mandelbrot.png"));
} catch (IOException e) {
e.printStackTrace();
}
}

/**
* Method to generate the image of the Mandelbrot set. Two types of coordinates are used:
* image-coordinates that refer to the pixels and figure-coordinates that refer to the complex
* numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this
* method determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot
* set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
*
* @param imageWidth The width of the rendered image.
* @param imageHeight The height of the rendered image.
* @param figureCenterX The x-coordinate of the center of the figure.
* @param figureCenterY The y-coordinate of the center of the figure.
* @param figureWidth The width of the figure.
* @param maxStep Maximum number of steps to check for divergent behavior.
* @param useDistanceColorCoding Render in color or black and white.
* @return The image of the rendered Mandelbrot set.
*/
public static BufferedImage getImage(
int imageWidth,
int imageHeight,
double figureCenterX,
double figureCenterY,
double figureWidth,
int maxStep,
boolean useDistanceColorCoding) {
if (imageWidth <= 0) {
throw new IllegalArgumentException("imageWidth should be greater than zero");
}

if (imageHeight <= 0) {
throw new IllegalArgumentException("imageHeight should be greater than zero");
}

if (maxStep <= 0) {
throw new IllegalArgumentException("maxStep should be greater than zero");
}

BufferedImage image = new BufferedImage(imageWidth, imageHeight, BufferedImage.TYPE_INT_RGB);
double figureHeight = figureWidth / imageWidth * imageHeight;

// loop through the image-coordinates
for (int imageX = 0; imageX < imageWidth; imageX++) {
for (int imageY = 0; imageY < imageHeight; imageY++) {
// determine the figure-coordinates based on the image-coordinates
double figureX = figureCenterX + ((double) imageX / imageWidth - 0.5) * figureWidth;
double figureY = figureCenterY + ((double) imageY / imageHeight - 0.5) * figureHeight;

double distance = getDistance(figureX, figureY, maxStep);

// color the corresponding pixel based on the selected coloring-function
image.setRGB(
imageX,
imageY,
useDistanceColorCoding
? colorCodedColorMap(distance).getRGB()
: blackAndWhiteColorMap(distance).getRGB());
}
}

return image;
}

/**
* Black and white color-coding that ignores the relative distance. The Mandelbrot set is black,
* everything else is white.
*
* @param distance Distance until divergence threshold
* @return The color corresponding to the distance.
*/
private static Color blackAndWhiteColorMap(double distance) {
return distance >= 1 ? new Color(0, 0, 0) : new Color(255, 255, 255);
}

/**
* Color-coding taking the relative distance into account. The Mandelbrot set is black.
*
* @param distance Distance until divergence threshold.
* @return The color corresponding to the distance.
*/
private static Color colorCodedColorMap(double distance) {
if (distance >= 1) {
return new Color(0, 0, 0);
} else {
// simplified transformation of HSV to RGB
// distance determines hue
double hue = 360 * distance;
double saturation = 1;
double val = 255;
int hi = (int) (Math.floor(hue / 60)) % 6;
double f = hue / 60 - Math.floor(hue / 60);

int v = (int) val;
int p = 0;
int q = (int) (val * (1 - f * saturation));
int t = (int) (val * (1 - (1 - f) * saturation));

switch (hi) {
case 0:
return new Color(v, t, p);
case 1:
return new Color(q, v, p);
case 2:
return new Color(p, v, t);
case 3:
return new Color(p, q, v);
case 4:
return new Color(t, p, v);
default:
return new Color(v, p, q);
}
}
}

/**
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
* constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their
* distance is 1.
*
* @param figureX The x-coordinate within the figure.
* @param figureX The y-coordinate within the figure.
* @param maxStep Maximum number of steps to check for divergent behavior.
* @return The relative distance as the ratio of steps taken to maxStep.
*/
private static double getDistance(double figureX, double figureY, int maxStep) {
double a = figureX;
double b = figureY;
int currentStep = 0;
for (int step = 0; step < maxStep; step++) {
currentStep = step;
double aNew = a * a - b * b + figureX;
b = 2 * a * b + figureY;
a = aNew;

// divergence happens for all complex number with an absolute value
// greater than 4 (= divergence threshold)
if (a * a + b * b > 4) {
break;
}
}
return (double) currentStep / (maxStep - 1);
}
}