Skip to content

Miller-Rabin primality test implementation #4329

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Aug 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions src/main/java/com/thealgorithms/maths/MillerRabinPrimalityCheck.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
package com.thealgorithms.maths;

import java.util.Random;

public class MillerRabinPrimalityCheck {

/**
* Check whether the given number is prime or not
* MillerRabin algorithm is probabilistic. There is also an altered version which is deterministic.
* https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
* https://cp-algorithms.com/algebra/primality_tests.html
*
* @param n Whole number which is tested on primality
* @param k Number of iterations
* If n is composite then running k iterations of the Miller–Rabin
* test will declare n probably prime with a probability at most 4^(−k)
* @return true or false whether the given number is probably prime or not
*/

public static boolean millerRabin(long n, int k) { // returns true if n is probably prime, else returns false.
if (n < 4) return n == 2 || n == 3;

int s = 0;
long d = n - 1;
while ((d & 1) == 0) {
d >>= 1;
s++;
}
Random rnd = new Random();
for (int i = 0; i < k; i++) {
long a = 2 + rnd.nextLong(n) % (n - 3);
if (checkComposite(n, a, d, s)) return false;
}
return true;
}

public static boolean deterministicMillerRabin(long n) { // returns true if n is prime, else returns false.
if (n < 2) return false;

int r = 0;
long d = n - 1;
while ((d & 1) == 0) {
d >>= 1;
r++;
}

for (int a : new int[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
if (n == a) return true;
if (checkComposite(n, a, d, r)) return false;
}
return true;
}

/**
* Check if number n is composite (probabilistic)
*
* @param n Whole number which is tested for compositeness
* @param a Random number (prime base) to check if it holds certain equality
* @param d Number which holds this equation: 'n - 1 = 2^s * d'
* @param s Number of twos in (n - 1) factorization
*
* @return true or false whether the numbers hold the equation or not
* the equations are described on the websites mentioned at the beginning of the class
*/
private static boolean checkComposite(long n, long a, long d, int s) {
long x = powerModP(a, d, n);
if (x == 1 || x == n - 1) return false;
for (int r = 1; r < s; r++) {
x = powerModP(x, 2, n);
if (x == n - 1) return false;
}
return true;
}

private static long powerModP(long x, long y, long p) {
long res = 1; // Initialize result

x = x % p; // Update x if it is more than or equal to p

if (x == 0) return 0; // In case x is divisible by p;

while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1) res = multiplyModP(res, x, p);

// y must be even now
y = y >> 1; // y = y/2
x = multiplyModP(x, x, p);
}
return res;
}

private static long multiplyModP(long a, long b, long p) {
long aHi = a >> 24;
long aLo = a & ((1 << 24) - 1);
long bHi = b >> 24;
long bLo = b & ((1 << 24) - 1);
long result = ((((aHi * bHi << 16) % p) << 16) % p) << 16;
result += ((aLo * bHi + aHi * bLo) << 24) + aLo * bLo;
return result % p;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
package com.thealgorithms.maths;

import static com.thealgorithms.maths.MillerRabinPrimalityCheck.*;
import static org.junit.jupiter.api.Assertions.*;

import org.junit.jupiter.api.Test;

class MillerRabinPrimalityCheckTest {
@Test
void testDeterministicMillerRabinForPrimes() {
assertTrue(deterministicMillerRabin(2));
assertTrue(deterministicMillerRabin(37));
assertTrue(deterministicMillerRabin(123457));
assertTrue(deterministicMillerRabin(6472601713L));
}
@Test
void testDeterministicMillerRabinForNotPrimes() {
assertFalse(deterministicMillerRabin(1));
assertFalse(deterministicMillerRabin(35));
assertFalse(deterministicMillerRabin(123453));
assertFalse(deterministicMillerRabin(647260175));
}
@Test
void testMillerRabinForPrimes() {
assertTrue(millerRabin(11, 5));
assertTrue(millerRabin(97, 5));
assertTrue(millerRabin(6720589, 5));
assertTrue(millerRabin(9549401549L, 5));
}
}