Skip to content

Adding Monte Carlo's Integral Approximation #6235

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
May 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
package com.thealgorithms.randomized;

import java.util.Random;
import java.util.function.Function;

/**
* A demonstration of the Monte Carlo integration algorithm in Java.
*
* <p>This class estimates the value of definite integrals using randomized sampling,
* also known as the Monte Carlo method. It is particularly effective for:
* <ul>
* <li>Functions that are difficult or impossible to integrate analytically</li>
* <li>High-dimensional integrals where traditional methods are inefficient</li>
* <li>Simulation and probabilistic analysis tasks</li>
* </ul>
*
* <p>The core idea is to sample random points uniformly from the integration domain,
* evaluate the function at those points, and compute the scaled average to estimate the integral.
*
* <p>For a one-dimensional integral over [a, b], the approximation is the function range (b-a),
* multiplied by the function average result for a random sample.
* See more: <a href="https://en.wikipedia.org/wiki/Monte_Carlo_integration">Monte Carlo Integration</a>
*
* @author: MuhammadEzzatHBK
*/

public final class MonteCarloIntegration {

private MonteCarloIntegration() {
}

/**
* Approximates the definite integral of a given function over a specified
* interval using the Monte Carlo method with a fixed random seed for
* reproducibility.
*
* @param fx the function to integrate
* @param a the lower bound of the interval
* @param b the upper bound of the interval
* @param n the number of random samples to use
* @param seed the seed for the random number generator
* @return the approximate value of the integral
*/
public static double approximate(Function<Double, Double> fx, double a, double b, int n, long seed) {
return doApproximate(fx, a, b, n, new Random(seed));
}

/**
* Approximates the definite integral of a given function over a specified
* interval using the Monte Carlo method with a random seed based on the
* current system time for more randomness.
*
* @param fx the function to integrate
* @param a the lower bound of the interval
* @param b the upper bound of the interval
* @param n the number of random samples to use
* @return the approximate value of the integral
*/
public static double approximate(Function<Double, Double> fx, double a, double b, int n) {
return doApproximate(fx, a, b, n, new Random(System.currentTimeMillis()));
}

private static double doApproximate(Function<Double, Double> fx, double a, double b, int n, Random generator) {
if (!validate(fx, a, b, n)) {
throw new IllegalArgumentException("Invalid input parameters");
}
double totalArea = 0.0;
double interval = b - a;
for (int i = 0; i < n; i++) {
double x = a + generator.nextDouble() * interval;
totalArea += fx.apply(x);
}
return interval * totalArea / n;
}

private static boolean validate(Function<Double, Double> fx, double a, double b, int n) {
boolean isFunctionValid = fx != null;
boolean isIntervalValid = a < b;
boolean isSampleSizeValid = n > 0;
return isFunctionValid && isIntervalValid && isSampleSizeValid;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
package com.thealgorithms.randomized;

import static com.thealgorithms.randomized.MonteCarloIntegration.approximate;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertThrows;

import java.util.function.Function;
import org.junit.jupiter.api.Test;

class MonteCarloIntegrationTest {

private static final double EPSILON = 0.03; // Allow 3% error margin

@Test
void testConstantFunction() {
// Integral of f(x) = 2 from 0 to 1 is 2
Function<Double, Double> constant = x -> 2.0;
double result = approximate(constant, 0, 1, 10000);
assertEquals(2.0, result, EPSILON);
}

@Test
void testLinearFunction() {
// Integral of f(x) = x from 0 to 1 is 0.5
Function<Double, Double> linear = Function.identity();
double result = approximate(linear, 0, 1, 10000);
assertEquals(0.5, result, EPSILON);
}

@Test
void testQuadraticFunction() {
// Integral of f(x) = x^2 from 0 to 1 is 1/3
Function<Double, Double> quadratic = x -> x * x;
double result = approximate(quadratic, 0, 1, 10000);
assertEquals(1.0 / 3.0, result, EPSILON);
}

@Test
void testLargeSampleSize() {
// Integral of f(x) = x^2 from 0 to 1 is 1/3
Function<Double, Double> quadratic = x -> x * x;
double result = approximate(quadratic, 0, 1, 50000000);
assertEquals(1.0 / 3.0, result, EPSILON / 2); // Larger sample size, smaller error margin
}

@Test
void testReproducibility() {
Function<Double, Double> linear = Function.identity();
double result1 = approximate(linear, 0, 1, 10000, 42L);
double result2 = approximate(linear, 0, 1, 10000, 42L);
assertEquals(result1, result2, 0.0); // Exactly equal
}

@Test
void testNegativeInterval() {
// Integral of f(x) = x from -1 to 1 is 0
Function<Double, Double> linear = Function.identity();
double result = approximate(linear, -1, 1, 10000);
assertEquals(0.0, result, EPSILON);
}

@Test
void testNullFunction() {
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(null, 0, 1, 1000));
assertNotNull(exception);
}

@Test
void testInvalidInterval() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> {
approximate(linear, 2, 1, 1000); // b <= a
});
assertNotNull(exception);
}

@Test
void testZeroSampleSize() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, 0));
assertNotNull(exception);
}

@Test
void testNegativeSampleSize() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, -100));
assertNotNull(exception);
}
}