Skip to content

added-ModularArithmetic-code #1217

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions Maths/ModularArithmetic.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import { extendedEuclideanGCD } from './ExtendedEuclideanGCD'

/**
* https://brilliant.org/wiki/modular-arithmetic/
* @param {Number} arg1 first argument
* @param {Number} arg2 second argument
* @returns {Number}
*/

export class ModRing {
constructor (MOD) {
this.MOD = MOD
}

isInputValid = (arg1, arg2) => {
if (!this.MOD) {
throw new Error('Modulus must be initialized in the object constructor')
}
if (typeof arg1 !== 'number' || typeof arg2 !== 'number') {
throw new TypeError('Input must be Numbers')
}
}
/**
* Modulus is Distributive property,
* As a result, we separate it into numbers in order to keep it within MOD's range
*/

add = (arg1, arg2) => {
this.isInputValid(arg1, arg2)
return ((arg1 % this.MOD) + (arg2 % this.MOD)) % this.MOD
}

subtract = (arg1, arg2) => {
this.isInputValid(arg1, arg2)
// An extra MOD is added to check negative results
return ((arg1 % this.MOD) - (arg2 % this.MOD) + this.MOD) % this.MOD
}

multiply = (arg1, arg2) => {
this.isInputValid(arg1, arg2)
return ((arg1 % this.MOD) * (arg2 % this.MOD)) % this.MOD
}

/**
*
* It is not Possible to find Division directly like the above methods,
* So we have to use the Extended Euclidean Theorem for finding Multiplicative Inverse
* https://github.com/TheAlgorithms/JavaScript/blob/master/Maths/ExtendedEuclideanGCD.js
*/

divide = (arg1, arg2) => {
// 1st Index contains the required result
// The theorem may have return Negative value, we need to add MOD to make it Positive
return (extendedEuclideanGCD(arg1, arg2)[1] + this.MOD) % this.MOD
}
}
45 changes: 45 additions & 0 deletions Maths/test/ModularArithmetic.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
import { ModRing } from '../ModularArithmetic'

describe('Modular Arithmetic', () => {
const MOD = 10000007
let ring
beforeEach(() => {
ring = new ModRing(MOD)
})

describe('add', () => {
it('Should return 9999993 for 10000000 and 10000000', () => {
expect(ring.add(10000000, 10000000)).toBe(9999993)
})
it('Should return 9999986 for 10000000 and 20000000', () => {
expect(ring.add(10000000, 20000000)).toBe(9999986)
})
})

describe('subtract', () => {
it('Should return 1000000 for 10000000 and 9000000', () => {
expect(ring.subtract(10000000, 9000000)).toBe(1000000)
})
it('Should return 7 for 10000000 and 20000000', () => {
expect(ring.subtract(10000000, 20000000)).toBe(7)
})
})

describe('multiply', () => {
it('Should return 1000000 for 100000 and 10000', () => {
expect(ring.multiply(100000, 10000)).toBe(9999307)
})
it('Should return 7 for 100000 and 10000100', () => {
expect(ring.multiply(10000000, 20000000)).toBe(98)
})
})

describe('divide', () => {
it('Should return 4 for 3 and 11', () => {
expect(ring.divide(3, 11)).toBe(4)
})
it('Should return 2 for 18 and 7', () => {
expect(ring.divide(18, 7)).toBe(2)
})
})
})