Skip to content

feat: add row echelon matrix algorithm #1454

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions Maths/RowEchelon.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
/**
* Given a two dimensional matrix, find its row echelon form.
*
* For more info: https://en.wikipedia.org/wiki/Row_echelon_form
*
* @param {number[[]]} matrix - Two dimensional array of rational numbers.
* @returns {number[[]]} - Two dimensional array of rational numbers (row echelon form).
*
* @example
* const matrix = [
* [2,3,4,5,7],
* [9,8,4,0,9],
* [5,7,4,3,9],
* [3,4,0,2,1]
* ]
*
* const result = rowEchelon(matrix)
*
* // The function returns the corresponding row echelon form:
* // result:
* // [
* // [1, 1.5, 2, 2.5, 3.5],
* // [0, 1, 2.54545, 4.09091, 4.09091],
* // [0, 0, 1, 1.57692, 1.36539],
* // [0, 0, 0, 1, -0.25]
* // ]
*/

// Set a tolerance value for floating-point comparisons
const tolerance = 0.000001

// Check if all the rows have same length of elements
const isMatrixValid = (matrix) => {
let numRows = matrix.length
let numCols = matrix[0].length
for (let i = 0; i < numRows; i++) {
if (numCols !== matrix[i].length) {
return false
}
}

// Check for input other than a 2D matrix
if (
!Array.isArray(matrix) ||
matrix.length === 0 ||
!Array.isArray(matrix[0])
) {
return false
}
return true
}

const checkNonZero = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
// Checks if the current element is not very near to zero.
if (!isTolerant(0, matrix[i][currentCol], tolerance)) {
return true
}
}
return false
}

const swapRows = (currentRow, withRow, matrix) => {
let numCols = matrix[0].length
let tempValue = 0
for (let j = 0; j < numCols; j++) {
tempValue = matrix[currentRow][j]
matrix[currentRow][j] = matrix[withRow][j]
matrix[withRow][j] = tempValue
}
}

// Select a pivot element in the current column to facilitate row operations.
// Pivot element is the first non-zero element found from the current row
// down to the last row.
const selectPivot = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
if (matrix[i][currentCol] !== 0) {
swapRows(currentRow, i, matrix)
return
}
}
}

// Multiply each element of the given row with a factor.
const scalarMultiplication = (currentRow, factor, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[currentRow][j] *= factor
}
}

// Subtract one row from another row
const subtractRow = (currentRow, fromRow, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[fromRow][j] -= matrix[currentRow][j]
}
}

// Check if two numbers are equal within a given tolerance
const isTolerant = (a, b, tolerance) => {
const absoluteDifference = Math.abs(a - b)
return absoluteDifference <= tolerance
}

const rowEchelon = (matrix) => {
// Check if the input matrix is valid; if not, throw an error.
if (!isMatrixValid(matrix)) {
throw new Error('Input is not a valid 2D matrix.')
}

let numRows = matrix.length
let numCols = matrix[0].length
let result = matrix

// Iterate through the rows (i) and columns (j) of the matrix.
for (let i = 0, j = 0; i < numRows && j < numCols; ) {
// If the current column has all zero elements below the current row,
// move to the next column.
if (!checkNonZero(i, j, result)) {
j++
continue
}

// Select a pivot element and normalize the current row.
selectPivot(i, j, result)
let factor = 1 / result[i][j]
scalarMultiplication(i, factor, result)

// Make elements below the pivot element zero by performing
// row operations on subsequent rows.
for (let x = i + 1; x < numRows; x++) {
factor = result[x][j]
if (isTolerant(0, factor, tolerance)) {
continue
}
scalarMultiplication(i, factor, result)
subtractRow(i, x, result)
factor = 1 / factor
scalarMultiplication(i, factor, result)
}
i++
}
return result
}

export { rowEchelon }
89 changes: 89 additions & 0 deletions Maths/test/RowEchelon.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import { rowEchelon } from '../RowEchelon'
describe('Determinant', () => {
const tolerance = 0.000001
test.each([
[
[
[8, 1, 3, 5],
[4, 6, 8, 2],
[3, 5, 6, 8]
],
[
[1, 0.125, 0.375, 0.625],
[0, 1, 1.18182, -0.09091],
[0, 0, 1, -11.0769]
]
],
[
[
[6, 8, 1, 3, 5],
[1, 4, 6, 8, 2],
[0, 3, 5, 6, 8],
[2, 5, 9, 7, 8],
[5, 5, 7, 0, 1]
],
[
[1, 1.33333, 0.16667, 0.5, 0.83333],
[0, 1, 2.1875, 2.8125, 0.4375],
[0, 0, 1, 1.56, -4.28003],
[0, 0, 0, 1, -3.3595],
[0, 0, 0, 0, 1]
]
],
[
[
[1, 3, 5],
[6, 8, 2],
[5, 6, 8],
[7, 9, 9],
[5, 0, 6]
],
[
[1, 3, 5],
[0, 1, 2.8],
[0, 0, 1],
[0, 0, 0],
[0, 0, 0]
]
],
[
[
[0, 7, 8, 1, 3, 5],
[0, 6, 4, 6, 8, 2],
[0, 7, 3, 5, 6, 8],
[6, 8, 1, 0, 0, 4],
[3, 3, 5, 7, 3, 1],
[1, 2, 1, 0, 9, 7],
[8, 8, 0, 2, 3, 1]
],
[
[1, 1.33333, 0.16667, 0, 0, 0.66667],
[0, 1, 0.66667, 1, 1.33333, 0.33333],
[0, 0, 1, 1.2, 1.99999, -3.4],
[0, 0, 0, 1, 1.3, -1.4],
[0, 0, 0, 0, 1, -2.32854],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0]
]
]
])('Should return the matrix in row echelon form.', (matrix, expected) => {
for (let i = 0; i < matrix.length; i++) {
for (let j = 0; j < matrix[i].length; j++) {
expect(rowEchelon(matrix)[i][j]).toBeCloseTo(expected[i][j], tolerance)
}
}
})

test.each([
[
[
[8, 1, 3, 5],
[4, 6, 8, 2, 7],
[3, 5, 6, 8]
],
'Input is not a valid 2D matrix.'
]
])('Should return the error message.', (matrix, expected) => {
expect(() => rowEchelon(matrix)).toThrowError(expected)
})
})