Skip to content

Added Matrix Exponentiation (Recursive) #357

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 84 additions & 0 deletions Maths/MatrixExponentiationRecursive.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
/*
Source:
https://en.wikipedia.org/wiki/Exponentiation_by_squaring

Complexity:
O(d^3 log n)
where: d is the dimension of the square matrix
n is the power the matrix is raised to
*/

const Identity = (n) => {
// Input: n: int
// Output: res: Identity matrix of size n x n
// Complexity: O(n^2)
const res = []
for (let i = 0; i < n; i++) {
res[i] = []
for (let j = 0; j < n; j++) {
res[i][j] = i === j ? 1 : 0
}
}
return res
}

const MatMult = (matA, matB) => {
// Input: matA: 2D Array of Numbers of size n x n
// matB: 2D Array of Numbers of size n x n
// Output: matA x matB: 2D Array of Numbers of size n x n
// Complexity: O(n^3)
const n = matA.length
const matC = []
for (let i = 0; i < n; i++) {
matC[i] = []
for (let j = 0; j < n; j++) {
matC[i][j] = 0
}
}
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
for (let k = 0; k < n; k++) {
matC[i][j] += matA[i][k] * matB[k][j]
}
}
}
return matC
}

const MatrixExponentiationRecursive = (mat, m) => {
// Input: mat: 2D Array of Numbers of size n x n
// Output: mat^n: 2D Array of Numbers of size n x n
// Complexity: O(n^3 log m)
if (m === 0) {
// return identity matrix of size n x n
return Identity(mat.length)
} else if (m % 2 === 1) {
// tmp = mat ^ m-1
const tmp = MatrixExponentiationRecursive(mat, m - 1)
/// return tmp * mat = (mat ^ m-1) * mat = mat ^ m
return MatMult(tmp, mat)
} else {
// tmp = mat ^ m/2
const tmp = MatrixExponentiationRecursive(mat, m >> 1)
// return tmp * tmp = (mat ^ m/2) ^ 2 = mat ^ m
return MatMult(tmp, tmp)
}
}

const main = () => {
const mat = [[1, 0, 2], [2, 1, 0], [0, 2, 1]]

// mat ^ 0 = [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
console.log(MatrixExponentiationRecursive(mat, 0))

// mat ^ 1 = [ [ 1, 0, 2 ], [ 2, 1, 0 ], [ 0, 2, 1 ] ]
console.log(MatrixExponentiationRecursive(mat, 1))

// mat ^ 2 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ]
console.log(MatrixExponentiationRecursive(mat, 2))

// mat ^ 5 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ]
console.log(MatrixExponentiationRecursive(mat, 5))
}

main()