|
| 1 | +# Pie Charts in Plotly |
| 2 | + |
| 3 | +A pie chart is a type of graph that represents the data in the circular graph. The slices of pie show the relative size of the data, and it is a type of pictorial representation of data. A pie chart requires a list of categorical variables and numerical variables. Here, the term "pie" represents the whole, and the "slices" represent the parts of the whole. |
| 4 | + |
| 5 | +Pie charts are commonly used in business presentations like sales, operations, survey results, resources, etc. as they are pleasing to the eye and provide a quick summary. |
| 6 | + |
| 7 | +Plotly is a very powerful library for creating modern visualizations and it provides a very easy and intuitive method to create highly customized pie charts. |
| 8 | + |
| 9 | +## Prerequisites |
| 10 | + |
| 11 | +Before creating bar plots in Plotly you must ensure that you have Python, Plotly and Pandas installed on your system. |
| 12 | + |
| 13 | +## Introduction |
| 14 | + |
| 15 | +There are various ways to create pie charts in `plotly`. One of the prominent and easiest one is using `plotly.express`. Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures. On the other hand you can also use `plotly.graph_objects` to create various plots. |
| 16 | + |
| 17 | +Here, we'll be using `plotly.express` to create the pie charts. Also we'll be converting our datasets into pandas DataFrames which makes it extremely convenient and easy to create charts. |
| 18 | + |
| 19 | +Also, note that when you execute the codes in a simple python file, the output plot will be shown in your **browser**, rather than a pop-up window like in matplotlib. If you do not want that, it is **recommended to create the plots in a notebook (like jupyter)**. For this, install an additional library `nbformat`. This way you can see the output on the notebook itself, and can also render its format to png, jpg, etc. |
| 20 | + |
| 21 | +## Creating a simple pie chart using `plotly.express.pie` |
| 22 | + |
| 23 | +In `plotly.express.pie`, data visualized by the sectors of the pie is set in values. The sector labels are set in names. |
| 24 | + |
| 25 | +```Python |
| 26 | +import plotly.express as px |
| 27 | +import pandas as pd |
| 28 | + |
| 29 | +# Creating dataset |
| 30 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 31 | +petals = [11,9,17,4,7] |
| 32 | + |
| 33 | +# Converting dataset to pandas DataFrame |
| 34 | +dataset = {'flowers':flowers, 'petals':petals} |
| 35 | +df = pd.DataFrame(dataset) |
| 36 | + |
| 37 | +# Creating pie chart |
| 38 | +fig = px.pie(df, values='petals', names='flowers') |
| 39 | + |
| 40 | +# Showing plot |
| 41 | +fig.show() |
| 42 | +``` |
| 43 | + |
| 44 | + |
| 45 | +Here, we are first creating the dataset and converting it into Pandas DataFrames using dictionaries, with its keys being DataFrame columns. Next, we are plotting the pie chart by using `px.pie`. In the `values` and `names` parameters, we have to specify a column name in the DataFrame. |
| 46 | + |
| 47 | +`px.pie(df, values='Petals', names='Flowers')` is used to specify that the pie chart is to be plotted by taking the values from column `Petals` and the fractional area of each slice is represented by **petal/sum(petals)**. The column `flowers` represents the labels of slices corresponding to each value in `petals`. |
| 48 | + |
| 49 | +**Note:** When you generate the image using above code, it will show you an **interactive plot**, if you want image, you can download it from their itself. |
| 50 | + |
| 51 | +## Customizing Pie Charts |
| 52 | + |
| 53 | +### Adding title to the chart |
| 54 | + |
| 55 | +Simply pass the title of your chart as a parameter in `px.pie`. |
| 56 | + |
| 57 | +```Python |
| 58 | +import plotly.express as px |
| 59 | +import pandas as pd |
| 60 | + |
| 61 | +# Creating dataset |
| 62 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 63 | +petals = [11,9,17,4,7] |
| 64 | + |
| 65 | +# Converting dataset to pandas DataFrame |
| 66 | +dataset = {'flowers':flowers, 'petals':petals} |
| 67 | +df = pd.DataFrame(dataset) |
| 68 | + |
| 69 | +# Creating pie chart |
| 70 | +fig = px.pie(df, values='petals', names='flowers', |
| 71 | + title='Number of Petals in Flowers') |
| 72 | + |
| 73 | +# Showing plot |
| 74 | +fig.show() |
| 75 | +``` |
| 76 | + |
| 77 | + |
| 78 | +### Coloring Slices |
| 79 | + |
| 80 | +There are a lot of beautiful color scales available in plotly and can be found here [plotly color scales](https://plotly.com/python/builtin-colorscales/). Choose your favourite colorscale apply it like this: |
| 81 | + |
| 82 | +```Python |
| 83 | +import plotly.express as px |
| 84 | +import pandas as pd |
| 85 | + |
| 86 | +# Creating dataset |
| 87 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 88 | +petals = [11,9,17,4,7] |
| 89 | + |
| 90 | +# Converting dataset to pandas DataFrame |
| 91 | +dataset = {'flowers':flowers, 'petals':petals} |
| 92 | +df = pd.DataFrame(dataset) |
| 93 | + |
| 94 | +# Creating pie chart |
| 95 | +fig = px.pie(df, values='petals', names='flowers', |
| 96 | + title='Number of Petals in Flowers', |
| 97 | + color_discrete_sequence=px.colors.sequential.Agsunset) |
| 98 | + |
| 99 | +# Showing plot |
| 100 | +fig.show() |
| 101 | +``` |
| 102 | + |
| 103 | + |
| 104 | +You can also set custom colors for each label by passing it as a dictionary(map) in `color_discrete_map`, like this: |
| 105 | + |
| 106 | +```Python |
| 107 | +import plotly.express as px |
| 108 | +import pandas as pd |
| 109 | + |
| 110 | +# Creating dataset |
| 111 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 112 | +petals = [11,9,17,4,7] |
| 113 | + |
| 114 | +# Converting dataset to pandas DataFrame |
| 115 | +dataset = {'flowers':flowers, 'petals':petals} |
| 116 | +df = pd.DataFrame(dataset) |
| 117 | + |
| 118 | +# Creating pie chart |
| 119 | +fig = px.pie(df, values='petals', names='flowers', |
| 120 | + title='Number of Petals in Flowers', |
| 121 | + color='flowers', |
| 122 | + color_discrete_map={'Rose':'red', |
| 123 | + 'Tulip':'magenta', |
| 124 | + 'Marigold':'green', |
| 125 | + 'Sunflower':'yellow', |
| 126 | + 'Daffodil':'royalblue'}) |
| 127 | + |
| 128 | +# Showing plot |
| 129 | +fig.show() |
| 130 | +``` |
| 131 | + |
| 132 | + |
| 133 | +### Labeling Slices |
| 134 | + |
| 135 | +You can use `fig.update_traces` to effectively control the properties of text being displayed on your figure, for example if we want both flower name , petal count and percentage in our slices, we can do it like this: |
| 136 | + |
| 137 | +```Python |
| 138 | +import plotly.express as px |
| 139 | +import pandas as pd |
| 140 | + |
| 141 | +# Creating dataset |
| 142 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 143 | +petals = [11,9,17,4,7] |
| 144 | + |
| 145 | +# Converting dataset to pandas DataFrame |
| 146 | +dataset = {'flowers':flowers, 'petals':petals} |
| 147 | +df = pd.DataFrame(dataset) |
| 148 | + |
| 149 | +# Creating pie chart |
| 150 | +fig = px.pie(df, values='petals', names='flowers', |
| 151 | + title='Number of Petals in Flowers') |
| 152 | + |
| 153 | +# Updating text properties |
| 154 | +fig.update_traces(textposition='inside', textinfo='label+value+percent') |
| 155 | + |
| 156 | +# Showing plot |
| 157 | +fig.show() |
| 158 | +``` |
| 159 | + |
| 160 | + |
| 161 | +### Pulling out a slice |
| 162 | + |
| 163 | +To pull out a slice pass an array to parameter `pull` in `fig.update_traces` corresponding to the slices and amount to be pulled. |
| 164 | + |
| 165 | +```Python |
| 166 | +import plotly.express as px |
| 167 | +import pandas as pd |
| 168 | + |
| 169 | +# Creating dataset |
| 170 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 171 | +petals = [11,9,17,4,7] |
| 172 | + |
| 173 | +# Converting dataset to pandas DataFrame |
| 174 | +dataset = {'flowers':flowers, 'petals':petals} |
| 175 | +df = pd.DataFrame(dataset) |
| 176 | + |
| 177 | +# Creating pie chart |
| 178 | +fig = px.pie(df, values='petals', names='flowers', |
| 179 | + title='Number of Petals in Flowers') |
| 180 | + |
| 181 | +# Updating text properties |
| 182 | +fig.update_traces(textposition='inside', textinfo='label+value') |
| 183 | + |
| 184 | +# Pulling out slice |
| 185 | +fig.update_traces(pull=[0,0,0,0.2,0]) |
| 186 | + |
| 187 | +# Showing plot |
| 188 | +fig.show() |
| 189 | +``` |
| 190 | + |
| 191 | + |
| 192 | +### Pattern Fills |
| 193 | + |
| 194 | +You can also add patterns (hatches), in addition to colors in pie charts. |
| 195 | + |
| 196 | +```Python |
| 197 | +import plotly.express as px |
| 198 | +import pandas as pd |
| 199 | + |
| 200 | +# Creating dataset |
| 201 | +flowers = ['Rose','Tulip','Marigold','Sunflower','Daffodil'] |
| 202 | +petals = [11,9,17,4,7] |
| 203 | + |
| 204 | +# Converting dataset to pandas DataFrame |
| 205 | +dataset = {'flowers':flowers, 'petals':petals} |
| 206 | +df = pd.DataFrame(dataset) |
| 207 | + |
| 208 | +# Creating pie chart |
| 209 | +fig = px.pie(df, values='petals', names='flowers', |
| 210 | + title='Number of Petals in Flowers') |
| 211 | + |
| 212 | +# Updating text properties |
| 213 | +fig.update_traces(textposition='outside', textinfo='label+value') |
| 214 | + |
| 215 | +# Adding pattern fills |
| 216 | +fig.update_traces(marker=dict(pattern=dict(shape=[".", "/", "+", "-","+"]))) |
| 217 | + |
| 218 | +# Showing plot |
| 219 | +fig.show() |
| 220 | +``` |
| 221 | + |
0 commit comments