-
-
Notifications
You must be signed in to change notification settings - Fork 481
GA.run_completed attribute initializer missing #122
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Labels
enhancement
New feature or request
Comments
Thanks @FeBe95 for your suggestion. This is definitely a good thing to support. In the next release, the |
ahmedfgad
added a commit
that referenced
this issue
Sep 9, 2022
1. Raise an exception if the sum of fitness values is zero while either roulette wheel or stochastic universal parent selection is used. #129 2. Initialize the value of the `run_completed` property to `False`. #122 3. The values of these properties are no longer reset with each call to the `run()` method `self.best_solutions, self.best_solutions_fitness, self.solutions, self.solutions_fitness`: #123. Now, the user can have the flexibility of calling the `run()` method more than once while extending the data collected after each generation. Another advantage happens when the instance is loaded and the `run()` method is called, as the old fitness value are shown on the graph alongside with the new fitness values. Read more in this section: [Continue without Loosing Progress](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#continue-without-loosing-progress) 4. Thanks [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan) (Dept. of Information and Communications Engineering, University of Murcia, Murcia, Spain) for editing this [comment](https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/5315bbec02777df96ce1ec665c94dece81c440f4/pygad.py#L73) in the code. 5315bbe 5. A bug fixed when `crossover_type=None`. 6. Support of elitism selection through a new parameter named `keep_elitism`. It defaults to 1 which means for each generation keep only the best solution in the next generation. If assigned 0, then it has no effect. Read more in this section: [Elitism Selection](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#elitism-selection). #74 7. A new instance attribute named `last_generation_elitism` added to hold the elitism in the last generation. 8. A new parameter called `random_seed` added to accept a seed for the random function generators. Credit to this issue #70 and [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan). Read more in this section: [Random Seed](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#random-seed). 9. Editing the `pygad.TorchGA` module to make sure the tensor data is moved from GPU to CPU. Thanks to Rasmus Johansson for opening this pull request: ahmedfgad/TorchGA#2
ahmedfgad
added a commit
that referenced
this issue
Sep 9, 2022
1. Raise an exception if the sum of fitness values is zero while either roulette wheel or stochastic universal parent selection is used. #129 2. Initialize the value of the `run_completed` property to `False`. #122 3. The values of these properties are no longer reset with each call to the `run()` method `self.best_solutions, self.best_solutions_fitness, self.solutions, self.solutions_fitness`: #123. Now, the user can have the flexibility of calling the `run()` method more than once while extending the data collected after each generation. Another advantage happens when the instance is loaded and the `run()` method is called, as the old fitness value are shown on the graph alongside with the new fitness values. Read more in this section: [Continue without Loosing Progress](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#continue-without-loosing-progress) 4. Thanks [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan) (Dept. of Information and Communications Engineering, University of Murcia, Murcia, Spain) for editing this [comment](https://github.com/ahmedfgad/GeneticAlgorithmPython/blob/5315bbec02777df96ce1ec665c94dece81c440f4/pygad.py#L73) in the code. 5315bbe 5. A bug fixed when `crossover_type=None`. 6. Support of elitism selection through a new parameter named `keep_elitism`. It defaults to 1 which means for each generation keep only the best solution in the next generation. If assigned 0, then it has no effect. Read more in this section: [Elitism Selection](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#elitism-selection). #74 7. A new instance attribute named `last_generation_elitism` added to hold the elitism in the last generation. 8. A new parameter called `random_seed` added to accept a seed for the random function generators. Credit to this issue #70 and [Prof. Fernando Jiménez Barrionuevo](http://webs.um.es/fernan). Read more in this section: [Random Seed](https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#random-seed). 9. Editing the `pygad.TorchGA` module to make sure the tensor data is moved from GPU to CPU. Thanks to Rasmus Johansson for opening this pull request: ahmedfgad/TorchGA#2
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I can't check
ga_instance.run_completed == False
during runtime becausega_instance.run_completed
is initialized toTrue
only after a finished run. It was never initialized toFalse
inside ofclass GA
. This line is missing frompygad.py
I suppose (lines 911 - 941):Workaround for now in
example.py
:The text was updated successfully, but these errors were encountered: