-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile.go
1902 lines (1673 loc) · 49 KB
/
file.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package elf implements access to ELF object files.
# Security
This package is not designed to be hardened against adversarial inputs, and is
outside the scope of https://go.dev/security/policy. In particular, only basic
validation is done when parsing object files. As such, care should be taken when
parsing untrusted inputs, as parsing malformed files may consume significant
resources, or cause panics.
*/
package elf
import (
"bytes"
"compress/zlib"
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"internal/saferio"
"internal/zstd"
"io"
"os"
"strings"
"unsafe"
)
// TODO: error reporting detail
/*
* Internal ELF representation
*/
// A FileHeader represents an ELF file header.
type FileHeader struct {
Class Class
Data Data
Version Version
OSABI OSABI
ABIVersion uint8
ByteOrder binary.ByteOrder
Type Type
Machine Machine
Entry uint64
}
// A File represents an open ELF file.
type File struct {
FileHeader
Sections []*Section
Progs []*Prog
closer io.Closer
dynVers []DynamicVersion
dynVerNeeds []DynamicVersionNeed
gnuVersym []byte
}
// A SectionHeader represents a single ELF section header.
type SectionHeader struct {
Name string
Type SectionType
Flags SectionFlag
Addr uint64
Offset uint64
Size uint64
Link uint32
Info uint32
Addralign uint64
Entsize uint64
// FileSize is the size of this section in the file in bytes.
// If a section is compressed, FileSize is the size of the
// compressed data, while Size (above) is the size of the
// uncompressed data.
FileSize uint64
}
// A Section represents a single section in an ELF file.
type Section struct {
SectionHeader
// Embed ReaderAt for ReadAt method.
// Do not embed SectionReader directly
// to avoid having Read and Seek.
// If a client wants Read and Seek it must use
// Open() to avoid fighting over the seek offset
// with other clients.
//
// ReaderAt may be nil if the section is not easily available
// in a random-access form. For example, a compressed section
// may have a nil ReaderAt.
io.ReaderAt
sr *io.SectionReader
compressionType CompressionType
compressionOffset int64
}
// Data reads and returns the contents of the ELF section.
// Even if the section is stored compressed in the ELF file,
// Data returns uncompressed data.
//
// For an [SHT_NOBITS] section, Data always returns a non-nil error.
func (s *Section) Data() ([]byte, error) {
return saferio.ReadData(s.Open(), s.Size)
}
// stringTable reads and returns the string table given by the
// specified link value.
func (f *File) stringTable(link uint32) ([]byte, error) {
if link <= 0 || link >= uint32(len(f.Sections)) {
return nil, errors.New("section has invalid string table link")
}
return f.Sections[link].Data()
}
// Open returns a new ReadSeeker reading the ELF section.
// Even if the section is stored compressed in the ELF file,
// the ReadSeeker reads uncompressed data.
//
// For an [SHT_NOBITS] section, all calls to the opened reader
// will return a non-nil error.
func (s *Section) Open() io.ReadSeeker {
if s.Type == SHT_NOBITS {
return io.NewSectionReader(&nobitsSectionReader{}, 0, int64(s.Size))
}
var zrd func(io.Reader) (io.ReadCloser, error)
if s.Flags&SHF_COMPRESSED == 0 {
if !strings.HasPrefix(s.Name, ".zdebug") {
return io.NewSectionReader(s.sr, 0, 1<<63-1)
}
b := make([]byte, 12)
n, _ := s.sr.ReadAt(b, 0)
if n != 12 || string(b[:4]) != "ZLIB" {
return io.NewSectionReader(s.sr, 0, 1<<63-1)
}
s.compressionOffset = 12
s.compressionType = COMPRESS_ZLIB
s.Size = binary.BigEndian.Uint64(b[4:12])
zrd = zlib.NewReader
} else if s.Flags&SHF_ALLOC != 0 {
return errorReader{&FormatError{int64(s.Offset),
"SHF_COMPRESSED applies only to non-allocable sections", s.compressionType}}
}
switch s.compressionType {
case COMPRESS_ZLIB:
zrd = zlib.NewReader
case COMPRESS_ZSTD:
zrd = func(r io.Reader) (io.ReadCloser, error) {
return io.NopCloser(zstd.NewReader(r)), nil
}
}
if zrd == nil {
return errorReader{&FormatError{int64(s.Offset), "unknown compression type", s.compressionType}}
}
return &readSeekerFromReader{
reset: func() (io.Reader, error) {
fr := io.NewSectionReader(s.sr, s.compressionOffset, int64(s.FileSize)-s.compressionOffset)
return zrd(fr)
},
size: int64(s.Size),
}
}
// A ProgHeader represents a single ELF program header.
type ProgHeader struct {
Type ProgType
Flags ProgFlag
Off uint64
Vaddr uint64
Paddr uint64
Filesz uint64
Memsz uint64
Align uint64
}
// A Prog represents a single ELF program header in an ELF binary.
type Prog struct {
ProgHeader
// Embed ReaderAt for ReadAt method.
// Do not embed SectionReader directly
// to avoid having Read and Seek.
// If a client wants Read and Seek it must use
// Open() to avoid fighting over the seek offset
// with other clients.
io.ReaderAt
sr *io.SectionReader
}
// Open returns a new ReadSeeker reading the ELF program body.
func (p *Prog) Open() io.ReadSeeker { return io.NewSectionReader(p.sr, 0, 1<<63-1) }
// A Symbol represents an entry in an ELF symbol table section.
type Symbol struct {
Name string
Info, Other byte
// HasVersion reports whether the symbol has any version information.
// This will only be true for the dynamic symbol table.
HasVersion bool
// VersionIndex is the symbol's version index.
// Use the methods of the [VersionIndex] type to access it.
// This field is only meaningful if HasVersion is true.
VersionIndex VersionIndex
Section SectionIndex
Value, Size uint64
// These fields are present only for the dynamic symbol table.
Version string
Library string
}
/*
* ELF reader
*/
type FormatError struct {
off int64
msg string
val any
}
func (e *FormatError) Error() string {
msg := e.msg
if e.val != nil {
msg += fmt.Sprintf(" '%v' ", e.val)
}
msg += fmt.Sprintf("in record at byte %#x", e.off)
return msg
}
// Open opens the named file using [os.Open] and prepares it for use as an ELF binary.
func Open(name string) (*File, error) {
f, err := os.Open(name)
if err != nil {
return nil, err
}
ff, err := NewFile(f)
if err != nil {
f.Close()
return nil, err
}
ff.closer = f
return ff, nil
}
// Close closes the [File].
// If the [File] was created using [NewFile] directly instead of [Open],
// Close has no effect.
func (f *File) Close() error {
var err error
if f.closer != nil {
err = f.closer.Close()
f.closer = nil
}
return err
}
// SectionByType returns the first section in f with the
// given type, or nil if there is no such section.
func (f *File) SectionByType(typ SectionType) *Section {
for _, s := range f.Sections {
if s.Type == typ {
return s
}
}
return nil
}
// NewFile creates a new [File] for accessing an ELF binary in an underlying reader.
// The ELF binary is expected to start at position 0 in the ReaderAt.
func NewFile(r io.ReaderAt) (*File, error) {
sr := io.NewSectionReader(r, 0, 1<<63-1)
// Read and decode ELF identifier
var ident [16]uint8
if _, err := r.ReadAt(ident[0:], 0); err != nil {
return nil, err
}
if ident[0] != '\x7f' || ident[1] != 'E' || ident[2] != 'L' || ident[3] != 'F' {
return nil, &FormatError{0, "bad magic number", ident[0:4]}
}
f := new(File)
f.Class = Class(ident[EI_CLASS])
switch f.Class {
case ELFCLASS32:
case ELFCLASS64:
// ok
default:
return nil, &FormatError{0, "unknown ELF class", f.Class}
}
f.Data = Data(ident[EI_DATA])
var bo binary.ByteOrder
switch f.Data {
case ELFDATA2LSB:
bo = binary.LittleEndian
case ELFDATA2MSB:
bo = binary.BigEndian
default:
return nil, &FormatError{0, "unknown ELF data encoding", f.Data}
}
f.ByteOrder = bo
f.Version = Version(ident[EI_VERSION])
if f.Version != EV_CURRENT {
return nil, &FormatError{0, "unknown ELF version", f.Version}
}
f.OSABI = OSABI(ident[EI_OSABI])
f.ABIVersion = ident[EI_ABIVERSION]
// Read ELF file header
var phoff int64
var phentsize, phnum int
var shoff int64
var shentsize, shnum, shstrndx int
switch f.Class {
case ELFCLASS32:
var hdr Header32
data := make([]byte, unsafe.Sizeof(hdr))
if _, err := sr.ReadAt(data, 0); err != nil {
return nil, err
}
f.Type = Type(bo.Uint16(data[unsafe.Offsetof(hdr.Type):]))
f.Machine = Machine(bo.Uint16(data[unsafe.Offsetof(hdr.Machine):]))
f.Entry = uint64(bo.Uint32(data[unsafe.Offsetof(hdr.Entry):]))
if v := Version(bo.Uint32(data[unsafe.Offsetof(hdr.Version):])); v != f.Version {
return nil, &FormatError{0, "mismatched ELF version", v}
}
phoff = int64(bo.Uint32(data[unsafe.Offsetof(hdr.Phoff):]))
phentsize = int(bo.Uint16(data[unsafe.Offsetof(hdr.Phentsize):]))
phnum = int(bo.Uint16(data[unsafe.Offsetof(hdr.Phnum):]))
shoff = int64(bo.Uint32(data[unsafe.Offsetof(hdr.Shoff):]))
shentsize = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shentsize):]))
shnum = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shnum):]))
shstrndx = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shstrndx):]))
case ELFCLASS64:
var hdr Header64
data := make([]byte, unsafe.Sizeof(hdr))
if _, err := sr.ReadAt(data, 0); err != nil {
return nil, err
}
f.Type = Type(bo.Uint16(data[unsafe.Offsetof(hdr.Type):]))
f.Machine = Machine(bo.Uint16(data[unsafe.Offsetof(hdr.Machine):]))
f.Entry = bo.Uint64(data[unsafe.Offsetof(hdr.Entry):])
if v := Version(bo.Uint32(data[unsafe.Offsetof(hdr.Version):])); v != f.Version {
return nil, &FormatError{0, "mismatched ELF version", v}
}
phoff = int64(bo.Uint64(data[unsafe.Offsetof(hdr.Phoff):]))
phentsize = int(bo.Uint16(data[unsafe.Offsetof(hdr.Phentsize):]))
phnum = int(bo.Uint16(data[unsafe.Offsetof(hdr.Phnum):]))
shoff = int64(bo.Uint64(data[unsafe.Offsetof(hdr.Shoff):]))
shentsize = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shentsize):]))
shnum = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shnum):]))
shstrndx = int(bo.Uint16(data[unsafe.Offsetof(hdr.Shstrndx):]))
}
if shoff < 0 {
return nil, &FormatError{0, "invalid shoff", shoff}
}
if phoff < 0 {
return nil, &FormatError{0, "invalid phoff", phoff}
}
if shoff == 0 && shnum != 0 {
return nil, &FormatError{0, "invalid ELF shnum for shoff=0", shnum}
}
if shnum > 0 && shstrndx >= shnum {
return nil, &FormatError{0, "invalid ELF shstrndx", shstrndx}
}
var wantPhentsize, wantShentsize int
switch f.Class {
case ELFCLASS32:
wantPhentsize = 8 * 4
wantShentsize = 10 * 4
case ELFCLASS64:
wantPhentsize = 2*4 + 6*8
wantShentsize = 4*4 + 6*8
}
if phnum > 0 && phentsize < wantPhentsize {
return nil, &FormatError{0, "invalid ELF phentsize", phentsize}
}
// Read program headers
f.Progs = make([]*Prog, phnum)
phdata, err := saferio.ReadDataAt(sr, uint64(phnum)*uint64(phentsize), phoff)
if err != nil {
return nil, err
}
for i := 0; i < phnum; i++ {
off := uintptr(i) * uintptr(phentsize)
p := new(Prog)
switch f.Class {
case ELFCLASS32:
var ph Prog32
p.ProgHeader = ProgHeader{
Type: ProgType(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Type):])),
Flags: ProgFlag(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Flags):])),
Off: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Off):])),
Vaddr: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Vaddr):])),
Paddr: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Paddr):])),
Filesz: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Filesz):])),
Memsz: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Memsz):])),
Align: uint64(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Align):])),
}
case ELFCLASS64:
var ph Prog64
p.ProgHeader = ProgHeader{
Type: ProgType(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Type):])),
Flags: ProgFlag(bo.Uint32(phdata[off+unsafe.Offsetof(ph.Flags):])),
Off: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Off):]),
Vaddr: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Vaddr):]),
Paddr: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Paddr):]),
Filesz: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Filesz):]),
Memsz: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Memsz):]),
Align: bo.Uint64(phdata[off+unsafe.Offsetof(ph.Align):]),
}
}
if int64(p.Off) < 0 {
return nil, &FormatError{phoff + int64(off), "invalid program header offset", p.Off}
}
if int64(p.Filesz) < 0 {
return nil, &FormatError{phoff + int64(off), "invalid program header file size", p.Filesz}
}
p.sr = io.NewSectionReader(r, int64(p.Off), int64(p.Filesz))
p.ReaderAt = p.sr
f.Progs[i] = p
}
// If the number of sections is greater than or equal to SHN_LORESERVE
// (0xff00), shnum has the value zero and the actual number of section
// header table entries is contained in the sh_size field of the section
// header at index 0.
if shoff > 0 && shnum == 0 {
var typ, link uint32
sr.Seek(shoff, io.SeekStart)
switch f.Class {
case ELFCLASS32:
sh := new(Section32)
if err := binary.Read(sr, bo, sh); err != nil {
return nil, err
}
shnum = int(sh.Size)
typ = sh.Type
link = sh.Link
case ELFCLASS64:
sh := new(Section64)
if err := binary.Read(sr, bo, sh); err != nil {
return nil, err
}
shnum = int(sh.Size)
typ = sh.Type
link = sh.Link
}
if SectionType(typ) != SHT_NULL {
return nil, &FormatError{shoff, "invalid type of the initial section", SectionType(typ)}
}
if shnum < int(SHN_LORESERVE) {
return nil, &FormatError{shoff, "invalid ELF shnum contained in sh_size", shnum}
}
// If the section name string table section index is greater than or
// equal to SHN_LORESERVE (0xff00), this member has the value
// SHN_XINDEX (0xffff) and the actual index of the section name
// string table section is contained in the sh_link field of the
// section header at index 0.
if shstrndx == int(SHN_XINDEX) {
shstrndx = int(link)
if shstrndx < int(SHN_LORESERVE) {
return nil, &FormatError{shoff, "invalid ELF shstrndx contained in sh_link", shstrndx}
}
}
}
if shnum > 0 && shentsize < wantShentsize {
return nil, &FormatError{0, "invalid ELF shentsize", shentsize}
}
// Read section headers
c := saferio.SliceCap[Section](uint64(shnum))
if c < 0 {
return nil, &FormatError{0, "too many sections", shnum}
}
if shnum > 0 && ((1<<64)-1)/uint64(shnum) < uint64(shentsize) {
return nil, &FormatError{0, "section header overflow", shnum}
}
f.Sections = make([]*Section, 0, c)
names := make([]uint32, 0, c)
shdata, err := saferio.ReadDataAt(sr, uint64(shnum)*uint64(shentsize), shoff)
if err != nil {
return nil, err
}
for i := 0; i < shnum; i++ {
off := uintptr(i) * uintptr(shentsize)
s := new(Section)
switch f.Class {
case ELFCLASS32:
var sh Section32
names = append(names, bo.Uint32(shdata[off+unsafe.Offsetof(sh.Name):]))
s.SectionHeader = SectionHeader{
Type: SectionType(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Type):])),
Flags: SectionFlag(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Flags):])),
Addr: uint64(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Addr):])),
Offset: uint64(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Off):])),
FileSize: uint64(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Size):])),
Link: bo.Uint32(shdata[off+unsafe.Offsetof(sh.Link):]),
Info: bo.Uint32(shdata[off+unsafe.Offsetof(sh.Info):]),
Addralign: uint64(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Addralign):])),
Entsize: uint64(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Entsize):])),
}
case ELFCLASS64:
var sh Section64
names = append(names, bo.Uint32(shdata[off+unsafe.Offsetof(sh.Name):]))
s.SectionHeader = SectionHeader{
Type: SectionType(bo.Uint32(shdata[off+unsafe.Offsetof(sh.Type):])),
Flags: SectionFlag(bo.Uint64(shdata[off+unsafe.Offsetof(sh.Flags):])),
Offset: bo.Uint64(shdata[off+unsafe.Offsetof(sh.Off):]),
FileSize: bo.Uint64(shdata[off+unsafe.Offsetof(sh.Size):]),
Addr: bo.Uint64(shdata[off+unsafe.Offsetof(sh.Addr):]),
Link: bo.Uint32(shdata[off+unsafe.Offsetof(sh.Link):]),
Info: bo.Uint32(shdata[off+unsafe.Offsetof(sh.Info):]),
Addralign: bo.Uint64(shdata[off+unsafe.Offsetof(sh.Addralign):]),
Entsize: bo.Uint64(shdata[off+unsafe.Offsetof(sh.Entsize):]),
}
}
if int64(s.Offset) < 0 {
return nil, &FormatError{shoff + int64(off), "invalid section offset", int64(s.Offset)}
}
if int64(s.FileSize) < 0 {
return nil, &FormatError{shoff + int64(off), "invalid section size", int64(s.FileSize)}
}
s.sr = io.NewSectionReader(r, int64(s.Offset), int64(s.FileSize))
if s.Flags&SHF_COMPRESSED == 0 {
s.ReaderAt = s.sr
s.Size = s.FileSize
} else {
// Read the compression header.
switch f.Class {
case ELFCLASS32:
var ch Chdr32
chdata := make([]byte, unsafe.Sizeof(ch))
if _, err := s.sr.ReadAt(chdata, 0); err != nil {
return nil, err
}
s.compressionType = CompressionType(bo.Uint32(chdata[unsafe.Offsetof(ch.Type):]))
s.Size = uint64(bo.Uint32(chdata[unsafe.Offsetof(ch.Size):]))
s.Addralign = uint64(bo.Uint32(chdata[unsafe.Offsetof(ch.Addralign):]))
s.compressionOffset = int64(unsafe.Sizeof(ch))
case ELFCLASS64:
var ch Chdr64
chdata := make([]byte, unsafe.Sizeof(ch))
if _, err := s.sr.ReadAt(chdata, 0); err != nil {
return nil, err
}
s.compressionType = CompressionType(bo.Uint32(chdata[unsafe.Offsetof(ch.Type):]))
s.Size = bo.Uint64(chdata[unsafe.Offsetof(ch.Size):])
s.Addralign = bo.Uint64(chdata[unsafe.Offsetof(ch.Addralign):])
s.compressionOffset = int64(unsafe.Sizeof(ch))
}
}
f.Sections = append(f.Sections, s)
}
if len(f.Sections) == 0 {
return f, nil
}
// Load section header string table.
if shstrndx == 0 {
// If the file has no section name string table,
// shstrndx holds the value SHN_UNDEF (0).
return f, nil
}
shstr := f.Sections[shstrndx]
if shstr.Type != SHT_STRTAB {
return nil, &FormatError{shoff + int64(shstrndx*shentsize), "invalid ELF section name string table type", shstr.Type}
}
shstrtab, err := shstr.Data()
if err != nil {
return nil, err
}
for i, s := range f.Sections {
var ok bool
s.Name, ok = getString(shstrtab, int(names[i]))
if !ok {
return nil, &FormatError{shoff + int64(i*shentsize), "bad section name index", names[i]}
}
}
return f, nil
}
// getSymbols returns a slice of Symbols from parsing the symbol table
// with the given type, along with the associated string table.
func (f *File) getSymbols(typ SectionType) ([]Symbol, []byte, error) {
switch f.Class {
case ELFCLASS64:
return f.getSymbols64(typ)
case ELFCLASS32:
return f.getSymbols32(typ)
}
return nil, nil, errors.New("not implemented")
}
// ErrNoSymbols is returned by [File.Symbols] and [File.DynamicSymbols]
// if there is no such section in the File.
var ErrNoSymbols = errors.New("no symbol section")
func (f *File) getSymbols32(typ SectionType) ([]Symbol, []byte, error) {
symtabSection := f.SectionByType(typ)
if symtabSection == nil {
return nil, nil, ErrNoSymbols
}
data, err := symtabSection.Data()
if err != nil {
return nil, nil, fmt.Errorf("cannot load symbol section: %w", err)
}
if len(data) == 0 {
return nil, nil, errors.New("symbol section is empty")
}
if len(data)%Sym32Size != 0 {
return nil, nil, errors.New("length of symbol section is not a multiple of SymSize")
}
strdata, err := f.stringTable(symtabSection.Link)
if err != nil {
return nil, nil, fmt.Errorf("cannot load string table section: %w", err)
}
// The first entry is all zeros.
data = data[Sym32Size:]
symbols := make([]Symbol, len(data)/Sym32Size)
i := 0
var sym Sym32
for len(data) > 0 {
sym.Name = f.ByteOrder.Uint32(data[0:4])
sym.Value = f.ByteOrder.Uint32(data[4:8])
sym.Size = f.ByteOrder.Uint32(data[8:12])
sym.Info = data[12]
sym.Other = data[13]
sym.Shndx = f.ByteOrder.Uint16(data[14:16])
str, _ := getString(strdata, int(sym.Name))
symbols[i].Name = str
symbols[i].Info = sym.Info
symbols[i].Other = sym.Other
symbols[i].Section = SectionIndex(sym.Shndx)
symbols[i].Value = uint64(sym.Value)
symbols[i].Size = uint64(sym.Size)
i++
data = data[Sym32Size:]
}
return symbols, strdata, nil
}
func (f *File) getSymbols64(typ SectionType) ([]Symbol, []byte, error) {
symtabSection := f.SectionByType(typ)
if symtabSection == nil {
return nil, nil, ErrNoSymbols
}
data, err := symtabSection.Data()
if err != nil {
return nil, nil, fmt.Errorf("cannot load symbol section: %w", err)
}
if len(data)%Sym64Size != 0 {
return nil, nil, errors.New("length of symbol section is not a multiple of Sym64Size")
}
strdata, err := f.stringTable(symtabSection.Link)
if err != nil {
return nil, nil, fmt.Errorf("cannot load string table section: %w", err)
}
// The first entry is all zeros.
data = data[Sym64Size:]
symbols := make([]Symbol, len(data)/Sym64Size)
i := 0
var sym Sym64
for len(data) > 0 {
sym.Name = f.ByteOrder.Uint32(data[0:4])
sym.Info = data[4]
sym.Other = data[5]
sym.Shndx = f.ByteOrder.Uint16(data[6:8])
sym.Value = f.ByteOrder.Uint64(data[8:16])
sym.Size = f.ByteOrder.Uint64(data[16:24])
str, _ := getString(strdata, int(sym.Name))
symbols[i].Name = str
symbols[i].Info = sym.Info
symbols[i].Other = sym.Other
symbols[i].Section = SectionIndex(sym.Shndx)
symbols[i].Value = sym.Value
symbols[i].Size = sym.Size
i++
data = data[Sym64Size:]
}
return symbols, strdata, nil
}
// getString extracts a string from an ELF string table.
func getString(section []byte, start int) (string, bool) {
if start < 0 || start >= len(section) {
return "", false
}
for end := start; end < len(section); end++ {
if section[end] == 0 {
return string(section[start:end]), true
}
}
return "", false
}
// Section returns a section with the given name, or nil if no such
// section exists.
func (f *File) Section(name string) *Section {
for _, s := range f.Sections {
if s.Name == name {
return s
}
}
return nil
}
// applyRelocations applies relocations to dst. rels is a relocations section
// in REL or RELA format.
func (f *File) applyRelocations(dst []byte, rels []byte) error {
switch {
case f.Class == ELFCLASS64 && f.Machine == EM_X86_64:
return f.applyRelocationsAMD64(dst, rels)
case f.Class == ELFCLASS32 && f.Machine == EM_386:
return f.applyRelocations386(dst, rels)
case f.Class == ELFCLASS32 && f.Machine == EM_ARM:
return f.applyRelocationsARM(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_AARCH64:
return f.applyRelocationsARM64(dst, rels)
case f.Class == ELFCLASS32 && f.Machine == EM_PPC:
return f.applyRelocationsPPC(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_PPC64:
return f.applyRelocationsPPC64(dst, rels)
case f.Class == ELFCLASS32 && f.Machine == EM_MIPS:
return f.applyRelocationsMIPS(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_MIPS:
return f.applyRelocationsMIPS64(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_LOONGARCH:
return f.applyRelocationsLOONG64(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_RISCV:
return f.applyRelocationsRISCV64(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_S390:
return f.applyRelocationss390x(dst, rels)
case f.Class == ELFCLASS64 && f.Machine == EM_SPARCV9:
return f.applyRelocationsSPARC64(dst, rels)
default:
return errors.New("applyRelocations: not implemented")
}
}
// canApplyRelocation reports whether we should try to apply a
// relocation to a DWARF data section, given a pointer to the symbol
// targeted by the relocation.
// Most relocations in DWARF data tend to be section-relative, but
// some target non-section symbols (for example, low_PC attrs on
// subprogram or compilation unit DIEs that target function symbols).
func canApplyRelocation(sym *Symbol) bool {
return sym.Section != SHN_UNDEF && sym.Section < SHN_LORESERVE
}
func (f *File) applyRelocationsAMD64(dst []byte, rels []byte) error {
// 24 is the size of Rela64.
if len(rels)%24 != 0 {
return errors.New("length of relocation section is not a multiple of 24")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewReader(rels)
var rela Rela64
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rela)
symNo := rela.Info >> 32
t := R_X86_64(rela.Info & 0xffff)
if symNo == 0 || symNo > uint64(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
if !canApplyRelocation(sym) {
continue
}
// There are relocations, so this must be a normal
// object file. The code below handles only basic relocations
// of the form S + A (symbol plus addend).
switch t {
case R_X86_64_64:
if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
val64 := sym.Value + uint64(rela.Addend)
f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64)
case R_X86_64_32:
if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
val32 := uint32(sym.Value) + uint32(rela.Addend)
f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32)
}
}
return nil
}
func (f *File) applyRelocations386(dst []byte, rels []byte) error {
// 8 is the size of Rel32.
if len(rels)%8 != 0 {
return errors.New("length of relocation section is not a multiple of 8")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewReader(rels)
var rel Rel32
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rel)
symNo := rel.Info >> 8
t := R_386(rel.Info & 0xff)
if symNo == 0 || symNo > uint32(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
if t == R_386_32 {
if rel.Off+4 >= uint32(len(dst)) {
continue
}
val := f.ByteOrder.Uint32(dst[rel.Off : rel.Off+4])
val += uint32(sym.Value)
f.ByteOrder.PutUint32(dst[rel.Off:rel.Off+4], val)
}
}
return nil
}
func (f *File) applyRelocationsARM(dst []byte, rels []byte) error {
// 8 is the size of Rel32.
if len(rels)%8 != 0 {
return errors.New("length of relocation section is not a multiple of 8")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewReader(rels)
var rel Rel32
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rel)
symNo := rel.Info >> 8
t := R_ARM(rel.Info & 0xff)
if symNo == 0 || symNo > uint32(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
switch t {
case R_ARM_ABS32:
if rel.Off+4 >= uint32(len(dst)) {
continue
}
val := f.ByteOrder.Uint32(dst[rel.Off : rel.Off+4])
val += uint32(sym.Value)
f.ByteOrder.PutUint32(dst[rel.Off:rel.Off+4], val)
}
}
return nil
}
func (f *File) applyRelocationsARM64(dst []byte, rels []byte) error {
// 24 is the size of Rela64.
if len(rels)%24 != 0 {
return errors.New("length of relocation section is not a multiple of 24")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewReader(rels)
var rela Rela64
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rela)
symNo := rela.Info >> 32
t := R_AARCH64(rela.Info & 0xffff)
if symNo == 0 || symNo > uint64(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
if !canApplyRelocation(sym) {
continue
}
// There are relocations, so this must be a normal
// object file. The code below handles only basic relocations
// of the form S + A (symbol plus addend).
switch t {
case R_AARCH64_ABS64:
if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
val64 := sym.Value + uint64(rela.Addend)
f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], val64)
case R_AARCH64_ABS32:
if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
val32 := uint32(sym.Value) + uint32(rela.Addend)
f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], val32)
}
}
return nil
}
func (f *File) applyRelocationsPPC(dst []byte, rels []byte) error {
// 12 is the size of Rela32.
if len(rels)%12 != 0 {
return errors.New("length of relocation section is not a multiple of 12")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewReader(rels)
var rela Rela32
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rela)
symNo := rela.Info >> 8
t := R_PPC(rela.Info & 0xff)
if symNo == 0 || symNo > uint32(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
if !canApplyRelocation(sym) {
continue
}
switch t {
case R_PPC_ADDR32: