-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashtriemap.go
724 lines (664 loc) · 21.1 KB
/
hashtriemap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sync
import (
"internal/abi"
"internal/goarch"
"sync/atomic"
"unsafe"
)
// HashTrieMap is an implementation of a concurrent hash-trie. The implementation
// is designed around frequent loads, but offers decent performance for stores
// and deletes as well, especially if the map is larger. Its primary use-case is
// the unique package, but can be used elsewhere as well.
//
// The zero HashTrieMap is empty and ready to use.
// It must not be copied after first use.
type HashTrieMap[K comparable, V any] struct {
inited atomic.Uint32
initMu Mutex
root atomic.Pointer[indirect[K, V]]
keyHash hashFunc
valEqual equalFunc
seed uintptr
}
func (ht *HashTrieMap[K, V]) init() {
if ht.inited.Load() == 0 {
ht.initSlow()
}
}
//go:noinline
func (ht *HashTrieMap[K, V]) initSlow() {
ht.initMu.Lock()
defer ht.initMu.Unlock()
if ht.inited.Load() != 0 {
// Someone got to it while we were waiting.
return
}
// Set up root node, derive the hash function for the key, and the
// equal function for the value, if any.
var m map[K]V
mapType := abi.TypeOf(m).MapType()
ht.root.Store(newIndirectNode[K, V](nil))
ht.keyHash = mapType.Hasher
ht.valEqual = mapType.Elem.Equal
ht.seed = uintptr(runtime_rand())
ht.inited.Store(1)
}
type hashFunc func(unsafe.Pointer, uintptr) uintptr
type equalFunc func(unsafe.Pointer, unsafe.Pointer) bool
// Load returns the value stored in the map for a key, or nil if no
// value is present.
// The ok result indicates whether value was found in the map.
func (ht *HashTrieMap[K, V]) Load(key K) (value V, ok bool) {
ht.init()
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
i := ht.root.Load()
hashShift := 8 * goarch.PtrSize
for hashShift != 0 {
hashShift -= nChildrenLog2
n := i.children[(hash>>hashShift)&nChildrenMask].Load()
if n == nil {
return *new(V), false
}
if n.isEntry {
return n.entry().lookup(key)
}
i = n.indirect()
}
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
// LoadOrStore returns the existing value for the key if present.
// Otherwise, it stores and returns the given value.
// The loaded result is true if the value was loaded, false if stored.
func (ht *HashTrieMap[K, V]) LoadOrStore(key K, value V) (result V, loaded bool) {
ht.init()
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
var i *indirect[K, V]
var hashShift uint
var slot *atomic.Pointer[node[K, V]]
var n *node[K, V]
for {
// Find the key or a candidate location for insertion.
i = ht.root.Load()
hashShift = 8 * goarch.PtrSize
haveInsertPoint := false
for hashShift != 0 {
hashShift -= nChildrenLog2
slot = &i.children[(hash>>hashShift)&nChildrenMask]
n = slot.Load()
if n == nil {
// We found a nil slot which is a candidate for insertion.
haveInsertPoint = true
break
}
if n.isEntry {
// We found an existing entry, which is as far as we can go.
// If it stays this way, we'll have to replace it with an
// indirect node.
if v, ok := n.entry().lookup(key); ok {
return v, true
}
haveInsertPoint = true
break
}
i = n.indirect()
}
if !haveInsertPoint {
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
// Grab the lock and double-check what we saw.
i.mu.Lock()
n = slot.Load()
if (n == nil || n.isEntry) && !i.dead.Load() {
// What we saw is still true, so we can continue with the insert.
break
}
// We have to start over.
i.mu.Unlock()
}
// N.B. This lock is held from when we broke out of the outer loop above.
// We specifically break this out so that we can use defer here safely.
// One option is to break this out into a new function instead, but
// there's so much local iteration state used below that this turns out
// to be cleaner.
defer i.mu.Unlock()
var oldEntry *entry[K, V]
if n != nil {
oldEntry = n.entry()
if v, ok := oldEntry.lookup(key); ok {
// Easy case: by loading again, it turns out exactly what we wanted is here!
return v, true
}
}
newEntry := newEntryNode(key, value)
if oldEntry == nil {
// Easy case: create a new entry and store it.
slot.Store(&newEntry.node)
} else {
// We possibly need to expand the entry already there into one or more new nodes.
//
// Publish the node last, which will make both oldEntry and newEntry visible. We
// don't want readers to be able to observe that oldEntry isn't in the tree.
slot.Store(ht.expand(oldEntry, newEntry, hash, hashShift, i))
}
return value, false
}
// expand takes oldEntry and newEntry whose hashes conflict from bit 64 down to hashShift and
// produces a subtree of indirect nodes to hold the two new entries.
func (ht *HashTrieMap[K, V]) expand(oldEntry, newEntry *entry[K, V], newHash uintptr, hashShift uint, parent *indirect[K, V]) *node[K, V] {
// Check for a hash collision.
oldHash := ht.keyHash(unsafe.Pointer(&oldEntry.key), ht.seed)
if oldHash == newHash {
// Store the old entry in the new entry's overflow list, then store
// the new entry.
newEntry.overflow.Store(oldEntry)
return &newEntry.node
}
// We have to add an indirect node. Worse still, we may need to add more than one.
newIndirect := newIndirectNode(parent)
top := newIndirect
for {
if hashShift == 0 {
panic("internal/sync.HashTrieMap: ran out of hash bits while inserting")
}
hashShift -= nChildrenLog2 // hashShift is for the level parent is at. We need to go deeper.
oi := (oldHash >> hashShift) & nChildrenMask
ni := (newHash >> hashShift) & nChildrenMask
if oi != ni {
newIndirect.children[oi].Store(&oldEntry.node)
newIndirect.children[ni].Store(&newEntry.node)
break
}
nextIndirect := newIndirectNode(newIndirect)
newIndirect.children[oi].Store(&nextIndirect.node)
newIndirect = nextIndirect
}
return &top.node
}
// Store sets the value for a key.
func (ht *HashTrieMap[K, V]) Store(key K, old V) {
_, _ = ht.Swap(key, old)
}
// Swap swaps the value for a key and returns the previous value if any.
// The loaded result reports whether the key was present.
func (ht *HashTrieMap[K, V]) Swap(key K, new V) (previous V, loaded bool) {
ht.init()
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
var i *indirect[K, V]
var hashShift uint
var slot *atomic.Pointer[node[K, V]]
var n *node[K, V]
for {
// Find the key or a candidate location for insertion.
i = ht.root.Load()
hashShift = 8 * goarch.PtrSize
haveInsertPoint := false
for hashShift != 0 {
hashShift -= nChildrenLog2
slot = &i.children[(hash>>hashShift)&nChildrenMask]
n = slot.Load()
if n == nil || n.isEntry {
// We found a nil slot which is a candidate for insertion,
// or an existing entry that we'll replace.
haveInsertPoint = true
break
}
i = n.indirect()
}
if !haveInsertPoint {
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
// Grab the lock and double-check what we saw.
i.mu.Lock()
n = slot.Load()
if (n == nil || n.isEntry) && !i.dead.Load() {
// What we saw is still true, so we can continue with the insert.
break
}
// We have to start over.
i.mu.Unlock()
}
// N.B. This lock is held from when we broke out of the outer loop above.
// We specifically break this out so that we can use defer here safely.
// One option is to break this out into a new function instead, but
// there's so much local iteration state used below that this turns out
// to be cleaner.
defer i.mu.Unlock()
var zero V
var oldEntry *entry[K, V]
if n != nil {
// Swap if the keys compare.
oldEntry = n.entry()
newEntry, old, swapped := oldEntry.swap(key, new)
if swapped {
slot.Store(&newEntry.node)
return old, true
}
}
// The keys didn't compare, so we're doing an insertion.
newEntry := newEntryNode(key, new)
if oldEntry == nil {
// Easy case: create a new entry and store it.
slot.Store(&newEntry.node)
} else {
// We possibly need to expand the entry already there into one or more new nodes.
//
// Publish the node last, which will make both oldEntry and newEntry visible. We
// don't want readers to be able to observe that oldEntry isn't in the tree.
slot.Store(ht.expand(oldEntry, newEntry, hash, hashShift, i))
}
return zero, false
}
// CompareAndSwap swaps the old and new values for key
// if the value stored in the map is equal to old.
// The value type must be of a comparable type, otherwise CompareAndSwap will panic.
func (ht *HashTrieMap[K, V]) CompareAndSwap(key K, old, new V) (swapped bool) {
ht.init()
if ht.valEqual == nil {
panic("called CompareAndSwap when value is not of comparable type")
}
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
// Find a node with the key and compare with it. n != nil if we found the node.
i, _, slot, n := ht.find(key, hash, ht.valEqual, old)
if i != nil {
defer i.mu.Unlock()
}
if n == nil {
return false
}
// Try to swap the entry.
e, swapped := n.entry().compareAndSwap(key, old, new, ht.valEqual)
if !swapped {
// Nothing was actually swapped, which means the node is no longer there.
return false
}
// Store the entry back because it changed.
slot.Store(&e.node)
return true
}
// LoadAndDelete deletes the value for a key, returning the previous value if any.
// The loaded result reports whether the key was present.
func (ht *HashTrieMap[K, V]) LoadAndDelete(key K) (value V, loaded bool) {
ht.init()
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
// Find a node with the key and compare with it. n != nil if we found the node.
i, hashShift, slot, n := ht.find(key, hash, nil, *new(V))
if n == nil {
if i != nil {
i.mu.Unlock()
}
return *new(V), false
}
// Try to delete the entry.
v, e, loaded := n.entry().loadAndDelete(key)
if !loaded {
// Nothing was actually deleted, which means the node is no longer there.
i.mu.Unlock()
return *new(V), false
}
if e != nil {
// We didn't actually delete the whole entry, just one entry in the chain.
// Nothing else to do, since the parent is definitely not empty.
slot.Store(&e.node)
i.mu.Unlock()
return v, true
}
// Delete the entry.
slot.Store(nil)
// Check if the node is now empty (and isn't the root), and delete it if able.
for i.parent != nil && i.empty() {
if hashShift == 8*goarch.PtrSize {
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
hashShift += nChildrenLog2
// Delete the current node in the parent.
parent := i.parent
parent.mu.Lock()
i.dead.Store(true)
parent.children[(hash>>hashShift)&nChildrenMask].Store(nil)
i.mu.Unlock()
i = parent
}
i.mu.Unlock()
return v, true
}
// Delete deletes the value for a key.
func (ht *HashTrieMap[K, V]) Delete(key K) {
_, _ = ht.LoadAndDelete(key)
}
// CompareAndDelete deletes the entry for key if its value is equal to old.
// The value type must be comparable, otherwise this CompareAndDelete will panic.
//
// If there is no current value for key in the map, CompareAndDelete returns false
// (even if the old value is the nil interface value).
func (ht *HashTrieMap[K, V]) CompareAndDelete(key K, old V) (deleted bool) {
ht.init()
if ht.valEqual == nil {
panic("called CompareAndDelete when value is not of comparable type")
}
hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed)
// Find a node with the key. n != nil if we found the node.
i, hashShift, slot, n := ht.find(key, hash, nil, *new(V))
if n == nil {
if i != nil {
i.mu.Unlock()
}
return false
}
// Try to delete the entry.
e, deleted := n.entry().compareAndDelete(key, old, ht.valEqual)
if !deleted {
// Nothing was actually deleted, which means the node is no longer there.
i.mu.Unlock()
return false
}
if e != nil {
// We didn't actually delete the whole entry, just one entry in the chain.
// Nothing else to do, since the parent is definitely not empty.
slot.Store(&e.node)
i.mu.Unlock()
return true
}
// Delete the entry.
slot.Store(nil)
// Check if the node is now empty (and isn't the root), and delete it if able.
for i.parent != nil && i.empty() {
if hashShift == 8*goarch.PtrSize {
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
hashShift += nChildrenLog2
// Delete the current node in the parent.
parent := i.parent
parent.mu.Lock()
i.dead.Store(true)
parent.children[(hash>>hashShift)&nChildrenMask].Store(nil)
i.mu.Unlock()
i = parent
}
i.mu.Unlock()
return true
}
// find searches the tree for a node that contains key (hash must be the hash of key).
// If valEqual != nil, then it will also enforce that the values are equal as well.
//
// Returns a non-nil node, which will always be an entry, if found.
//
// If i != nil then i.mu is locked, and it is the caller's responsibility to unlock it.
func (ht *HashTrieMap[K, V]) find(key K, hash uintptr, valEqual equalFunc, value V) (i *indirect[K, V], hashShift uint, slot *atomic.Pointer[node[K, V]], n *node[K, V]) {
for {
// Find the key or return if it's not there.
i = ht.root.Load()
hashShift = 8 * goarch.PtrSize
found := false
for hashShift != 0 {
hashShift -= nChildrenLog2
slot = &i.children[(hash>>hashShift)&nChildrenMask]
n = slot.Load()
if n == nil {
// Nothing to compare with. Give up.
i = nil
return
}
if n.isEntry {
// We found an entry. Check if it matches.
if _, ok := n.entry().lookupWithValue(key, value, valEqual); !ok {
// No match, comparison failed.
i = nil
n = nil
return
}
// We've got a match. Prepare to perform an operation on the key.
found = true
break
}
i = n.indirect()
}
if !found {
panic("internal/sync.HashTrieMap: ran out of hash bits while iterating")
}
// Grab the lock and double-check what we saw.
i.mu.Lock()
n = slot.Load()
if !i.dead.Load() && (n == nil || n.isEntry) {
// Either we've got a valid node or the node is now nil under the lock.
// In either case, we're done here.
return
}
// We have to start over.
i.mu.Unlock()
}
}
// All returns an iterator over each key and value present in the map.
//
// The iterator does not necessarily correspond to any consistent snapshot of the
// HashTrieMap's contents: no key will be visited more than once, but if the value
// for any key is stored or deleted concurrently (including by yield), the iterator
// may reflect any mapping for that key from any point during iteration. The iterator
// does not block other methods on the receiver; even yield itself may call any
// method on the HashTrieMap.
func (ht *HashTrieMap[K, V]) All() func(yield func(K, V) bool) {
ht.init()
return func(yield func(key K, value V) bool) {
ht.iter(ht.root.Load(), yield)
}
}
// Range calls f sequentially for each key and value present in the map.
// If f returns false, range stops the iteration.
//
// This exists for compatibility with sync.Map; All should be preferred.
// It provides the same guarantees as sync.Map, and All.
func (ht *HashTrieMap[K, V]) Range(yield func(K, V) bool) {
ht.init()
ht.iter(ht.root.Load(), yield)
}
func (ht *HashTrieMap[K, V]) iter(i *indirect[K, V], yield func(key K, value V) bool) bool {
for j := range i.children {
n := i.children[j].Load()
if n == nil {
continue
}
if !n.isEntry {
if !ht.iter(n.indirect(), yield) {
return false
}
continue
}
e := n.entry()
for e != nil {
if !yield(e.key, e.value) {
return false
}
e = e.overflow.Load()
}
}
return true
}
// Clear deletes all the entries, resulting in an empty HashTrieMap.
func (ht *HashTrieMap[K, V]) Clear() {
ht.init()
// It's sufficient to just drop the root on the floor, but the root
// must always be non-nil.
ht.root.Store(newIndirectNode[K, V](nil))
}
const (
// 16 children. This seems to be the sweet spot for
// load performance: any smaller and we lose out on
// 50% or more in CPU performance. Any larger and the
// returns are minuscule (~1% improvement for 32 children).
nChildrenLog2 = 4
nChildren = 1 << nChildrenLog2
nChildrenMask = nChildren - 1
)
// indirect is an internal node in the hash-trie.
type indirect[K comparable, V any] struct {
node[K, V]
dead atomic.Bool
mu Mutex // Protects mutation to children and any children that are entry nodes.
parent *indirect[K, V]
children [nChildren]atomic.Pointer[node[K, V]]
}
func newIndirectNode[K comparable, V any](parent *indirect[K, V]) *indirect[K, V] {
return &indirect[K, V]{node: node[K, V]{isEntry: false}, parent: parent}
}
func (i *indirect[K, V]) empty() bool {
nc := 0
for j := range i.children {
if i.children[j].Load() != nil {
nc++
}
}
return nc == 0
}
// entry is a leaf node in the hash-trie.
type entry[K comparable, V any] struct {
node[K, V]
overflow atomic.Pointer[entry[K, V]] // Overflow for hash collisions.
key K
value V
}
func newEntryNode[K comparable, V any](key K, value V) *entry[K, V] {
return &entry[K, V]{
node: node[K, V]{isEntry: true},
key: key,
value: value,
}
}
func (e *entry[K, V]) lookup(key K) (V, bool) {
for e != nil {
if e.key == key {
return e.value, true
}
e = e.overflow.Load()
}
return *new(V), false
}
func (e *entry[K, V]) lookupWithValue(key K, value V, valEqual equalFunc) (V, bool) {
for e != nil {
if e.key == key && (valEqual == nil || valEqual(unsafe.Pointer(&e.value), abi.NoEscape(unsafe.Pointer(&value)))) {
return e.value, true
}
e = e.overflow.Load()
}
return *new(V), false
}
// swap replaces an entry in the overflow chain if keys compare equal. Returns the new entry chain,
// the old value, and whether or not anything was swapped.
//
// swap must be called under the mutex of the indirect node which e is a child of.
func (head *entry[K, V]) swap(key K, new V) (*entry[K, V], V, bool) {
if head.key == key {
// Return the new head of the list.
e := newEntryNode(key, new)
if chain := head.overflow.Load(); chain != nil {
e.overflow.Store(chain)
}
return e, head.value, true
}
i := &head.overflow
e := i.Load()
for e != nil {
if e.key == key {
eNew := newEntryNode(key, new)
eNew.overflow.Store(e.overflow.Load())
i.Store(eNew)
return head, e.value, true
}
i = &e.overflow
e = e.overflow.Load()
}
var zero V
return head, zero, false
}
// compareAndSwap replaces an entry in the overflow chain if both the key and value compare
// equal. Returns the new entry chain and whether or not anything was swapped.
//
// compareAndSwap must be called under the mutex of the indirect node which e is a child of.
func (head *entry[K, V]) compareAndSwap(key K, old, new V, valEqual equalFunc) (*entry[K, V], bool) {
if head.key == key && valEqual(unsafe.Pointer(&head.value), abi.NoEscape(unsafe.Pointer(&old))) {
// Return the new head of the list.
e := newEntryNode(key, new)
if chain := head.overflow.Load(); chain != nil {
e.overflow.Store(chain)
}
return e, true
}
i := &head.overflow
e := i.Load()
for e != nil {
if e.key == key && valEqual(unsafe.Pointer(&e.value), abi.NoEscape(unsafe.Pointer(&old))) {
eNew := newEntryNode(key, new)
eNew.overflow.Store(e.overflow.Load())
i.Store(eNew)
return head, true
}
i = &e.overflow
e = e.overflow.Load()
}
return head, false
}
// loadAndDelete deletes an entry in the overflow chain by key. Returns the value for the key, the new
// entry chain and whether or not anything was loaded (and deleted).
//
// loadAndDelete must be called under the mutex of the indirect node which e is a child of.
func (head *entry[K, V]) loadAndDelete(key K) (V, *entry[K, V], bool) {
if head.key == key {
// Drop the head of the list.
return head.value, head.overflow.Load(), true
}
i := &head.overflow
e := i.Load()
for e != nil {
if e.key == key {
i.Store(e.overflow.Load())
return e.value, head, true
}
i = &e.overflow
e = e.overflow.Load()
}
return *new(V), head, false
}
// compareAndDelete deletes an entry in the overflow chain if both the key and value compare
// equal. Returns the new entry chain and whether or not anything was deleted.
//
// compareAndDelete must be called under the mutex of the indirect node which e is a child of.
func (head *entry[K, V]) compareAndDelete(key K, value V, valEqual equalFunc) (*entry[K, V], bool) {
if head.key == key && valEqual(unsafe.Pointer(&head.value), abi.NoEscape(unsafe.Pointer(&value))) {
// Drop the head of the list.
return head.overflow.Load(), true
}
i := &head.overflow
e := i.Load()
for e != nil {
if e.key == key && valEqual(unsafe.Pointer(&e.value), abi.NoEscape(unsafe.Pointer(&value))) {
i.Store(e.overflow.Load())
return head, true
}
i = &e.overflow
e = e.overflow.Load()
}
return head, false
}
// node is the header for a node. It's polymorphic and
// is actually either an entry or an indirect.
type node[K comparable, V any] struct {
isEntry bool
}
func (n *node[K, V]) entry() *entry[K, V] {
if !n.isEntry {
panic("called entry on non-entry node")
}
return (*entry[K, V])(unsafe.Pointer(n))
}
func (n *node[K, V]) indirect() *indirect[K, V] {
if n.isEntry {
panic("called indirect on entry node")
}
return (*indirect[K, V])(unsafe.Pointer(n))
}
// Pull in runtime.rand so that we don't need to take a dependency
// on math/rand/v2.
//
//go:linkname runtime_rand runtime.rand
func runtime_rand() uint64