|
6 | 6 | from torch.utils.data import DataLoader
|
7 | 7 | from model import Discriminator, Faker
|
8 | 8 | from torch.utils.tensorboard import SummaryWriter
|
| 9 | +from pathlib import Path |
9 | 10 |
|
10 | 11 |
|
11 |
| -# ~~~~~~~~~~~~~~~~~~~ hyper parameters ~~~~~~~~~~~~~~~~~~~ # |
12 |
| -EPOCHS = 20 |
13 |
| -CHANNELS = 1 |
14 |
| -H, W = 64, 64 |
15 |
| -IMG_SIZE = CHANNELS * H * W |
16 |
| -lr = 2e-4 |
17 |
| -work_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
18 |
| -FEATURE_D = 128 |
19 |
| -Z_DIM = 100 |
20 |
| -GEN_TRAIN_STEPS = 5 |
21 |
| -BATCH_SIZE = 128 |
22 |
| -# ~~~~~~~~~~~~~~~~~~~ loading the dataset ~~~~~~~~~~~~~~~~~~~ # |
| 12 | +if __name__ == "__main__": |
23 | 13 |
|
24 |
| -trans = transforms.Compose( |
25 |
| - [transforms.Resize((H, W)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) |
| 14 | + # ~~~~~~~~~~~~~~~~~~~ hyper parameters ~~~~~~~~~~~~~~~~~~~ # |
| 15 | + EPOCHS = 20 |
| 16 | + CHANNELS = 1 |
| 17 | + H, W = 64, 64 |
| 18 | + IMG_SIZE = CHANNELS * H * W |
| 19 | + lr = 2e-4 |
| 20 | + work_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 21 | + FEATURE_D = 128 |
| 22 | + Z_DIM = 100 |
| 23 | + GEN_TRAIN_STEPS = 5 |
| 24 | + BATCH_SIZE = 128 |
| 25 | + Weight_dir = Path('/weights').resolve() |
| 26 | + if not Weight_dir.exists(): |
| 27 | + Weight_dir.mkdir() |
| 28 | + # ~~~~~~~~~~~~~~~~~~~ loading the dataset ~~~~~~~~~~~~~~~~~~~ # |
26 | 29 |
|
27 |
| -MNIST_data = MNIST('./data', True, transform=trans, download=True) |
| 30 | + trans = transforms.Compose( |
| 31 | + [transforms.Resize((H, W)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) |
28 | 32 |
|
29 |
| -loader = DataLoader(MNIST_data, BATCH_SIZE, True, num_workers=1) |
| 33 | + MNIST_data = MNIST('./data', True, transform=trans, download=True) |
30 | 34 |
|
31 |
| -# ~~~~~~~~~~~~~~~~~~~ creating tensorboard variables ~~~~~~~~~~~~~~~~~~~ # |
| 35 | + loader = DataLoader(MNIST_data, BATCH_SIZE, True, num_workers=1) |
32 | 36 |
|
33 |
| -writer_fake = SummaryWriter("logs/fake") |
34 |
| -writer_real = SummaryWriter("logs/real") |
| 37 | + # ~~~~~~~~~~~~~~~~~~~ creating tensorboard variables ~~~~~~~~~~~~~~~~~~~ # |
35 | 38 |
|
36 |
| -# ~~~~~~~~~~~~~~~~~~~ loading the model ~~~~~~~~~~~~~~~~~~~ # |
| 39 | + writer_fake = SummaryWriter("logs/fake") |
| 40 | + writer_real = SummaryWriter("logs/real") |
37 | 41 |
|
38 |
| -disc = Discriminator(img_channels=CHANNELS, |
39 |
| - feature_d=FEATURE_D).to(work_device) |
40 |
| -gen = Faker(Z_DIM, CHANNELS, FEATURE_D).to(work_device) |
| 42 | + # ~~~~~~~~~~~~~~~~~~~ loading the model ~~~~~~~~~~~~~~~~~~~ # |
41 | 43 |
|
42 |
| -# ~~~~~~~~~~~~~~~~~~~ create optimizer and loss ~~~~~~~~~~~~~~~~~~~ # |
| 44 | + disc = Discriminator(img_channels=CHANNELS, |
| 45 | + feature_d=FEATURE_D).to(work_device) |
| 46 | + gen = Faker(Z_DIM, CHANNELS, FEATURE_D).to(work_device) |
43 | 47 |
|
44 |
| -disc_optim = optim.Adam(disc.parameters(), lr, (0.5, 0.999)) |
45 |
| -gen_optim = optim.Adam(gen.parameters(), lr, (0.5, 0.999)) |
46 |
| -criterion = torch.nn.BCELoss() |
| 48 | + # ~~~~~~~~~~~~~~~~~~~ create optimizer and loss ~~~~~~~~~~~~~~~~~~~ # |
47 | 49 |
|
48 |
| -# ~~~~~~~~~~~~~~~~~~~ training loop ~~~~~~~~~~~~~~~~~~~ # |
| 50 | + disc_optim = optim.Adam(disc.parameters(), lr, (0.5, 0.999)) |
| 51 | + gen_optim = optim.Adam(gen.parameters(), lr, (0.5, 0.999)) |
| 52 | + criterion = torch.nn.BCELoss() |
49 | 53 |
|
50 |
| -for epoch in range(EPOCHS): |
| 54 | + # ~~~~~~~~~~~~~~~~~~~ training loop ~~~~~~~~~~~~~~~~~~~ # |
51 | 55 |
|
52 |
| - for batch_idx, (real, _) in enumerate(loader): |
53 |
| - disc.train() |
54 |
| - gen.train() |
55 |
| - real = real.to(work_device) |
56 |
| - fixed_noise = torch.rand(real.shape[0], Z_DIM, H, W).to(work_device) |
57 |
| - # ~~~~~~~~~~~~~~~~~~~ discriminator loop ~~~~~~~~~~~~~~~~~~~ # |
| 56 | + for epoch in range(EPOCHS): |
| 57 | + D_loss_prev = inf |
| 58 | + G_loss_prev = inf |
58 | 59 |
|
59 |
| - fake = gen(fixed_noise) # dim of (N,1,28,28) |
60 |
| - # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
61 |
| - real_predict = disc(real).view(-1) # make it one dimensional array |
62 |
| - fake_predict = disc(fake).view(-1) # make it one dimensional array |
| 60 | + for batch_idx, (real, _) in enumerate(loader): |
| 61 | + disc.train() |
| 62 | + gen.train() |
| 63 | + real = real.to(work_device) |
| 64 | + fixed_noise = torch.rand( |
| 65 | + real.shape[0], Z_DIM, 1, 1).to(work_device) |
| 66 | + # ~~~~~~~~~~~~~~~~~~~ discriminator loop ~~~~~~~~~~~~~~~~~~~ # |
63 | 67 |
|
64 |
| - labels = torch.cat([torch.ones_like(real_predict), |
65 |
| - torch.zeros_like(fake_predict)], dim=0) |
66 |
| - |
67 |
| - # ~~~~~~~~~~~~~~~~~~~ loss ~~~~~~~~~~~~~~~~~~~ # |
68 |
| - D_loss = criterion( |
69 |
| - torch.cat([real_predict, fake_predict], dim=0), labels) |
70 |
| - |
71 |
| - # ~~~~~~~~~~~~~~~~~~~ backward ~~~~~~~~~~~~~~~~~~~ # |
72 |
| - disc.zero_grad() |
73 |
| - D_loss.backward() |
74 |
| - disc_optim.step() |
75 |
| - |
76 |
| - # ~~~~~~~~~~~~~~~~~~~ generator loop ~~~~~~~~~~~~~~~~~~~ # |
77 |
| - for _ in range(GEN_TRAIN_STEPS): |
78 |
| - # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
79 |
| - fake = gen(fixed_noise).view(-1, CHANNELS, |
80 |
| - H, W) # dim of (N,1,32,32) |
| 68 | + fake = gen(fixed_noise) # dim of (N,1,28,28) |
81 | 69 | # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ #
|
| 70 | + real_predict = disc(real).view(-1) # make it one dimensional array |
82 | 71 | fake_predict = disc(fake).view(-1) # make it one dimensional array
|
| 72 | + |
| 73 | + labels = torch.cat([torch.ones_like(real_predict), |
| 74 | + torch.zeros_like(fake_predict)], dim=0) |
| 75 | + |
83 | 76 | # ~~~~~~~~~~~~~~~~~~~ loss ~~~~~~~~~~~~~~~~~~~ #
|
| 77 | + D_loss = criterion( |
| 78 | + torch.cat([real_predict, fake_predict], dim=0), labels) |
84 | 79 |
|
85 |
| - G_loss = criterion(fake_predict, torch.ones_like(fake_predict)) |
86 | 80 | # ~~~~~~~~~~~~~~~~~~~ backward ~~~~~~~~~~~~~~~~~~~ #
|
87 |
| - gen.zero_grad() |
88 |
| - G_loss.backward() |
89 |
| - gen_optim.step() |
90 |
| - |
91 |
| - # ~~~~~~~~~~~~~~~~~~~ loading the tensorboard ~~~~~~~~~~~~~~~~~~~ # |
92 |
| - |
93 |
| - if batch_idx == 0: |
94 |
| - print( |
95 |
| - f"Epoch [{epoch}/{EPOCHS}] Batch {batch_idx}/{len(loader)} \ |
96 |
| - Loss D: {D_loss:.4f}, loss G: {G_loss:.4f}" |
97 |
| - ) |
98 |
| - |
99 |
| - with torch.no_grad(): |
100 |
| - disc.eval() |
101 |
| - gen.eval() |
102 |
| - fake = gen(fixed_noise).reshape(-1, CHANNELS, H, W) |
103 |
| - data = real.reshape(-1, CHANNELS, H, W) |
104 |
| - if BATCH_SIZE > 32: |
105 |
| - fake = fake[:32] |
106 |
| - data = data[:32] |
107 |
| - img_grid_fake = torchvision.utils.make_grid( |
108 |
| - fake, normalize=True) |
109 |
| - img_grid_real = torchvision.utils.make_grid( |
110 |
| - data, normalize=True) |
111 |
| - |
112 |
| - writer_fake.add_image( |
113 |
| - "Mnist Fake Images", img_grid_fake, global_step=epoch |
114 |
| - ) |
115 |
| - writer_real.add_image( |
116 |
| - "Mnist Real Images", img_grid_real, global_step=epoch |
| 81 | + disc.zero_grad() |
| 82 | + D_loss.backward() |
| 83 | + disc_optim.step() |
| 84 | + |
| 85 | + # ~~~~~~~~~~~~~~~~~~~ generator loop ~~~~~~~~~~~~~~~~~~~ # |
| 86 | + for _ in range(GEN_TRAIN_STEPS): |
| 87 | + # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
| 88 | + fake = gen(fixed_noise) |
| 89 | + # ~~~~~~~~~~~~~~~~~~~ forward ~~~~~~~~~~~~~~~~~~~ # |
| 90 | + # make it one dimensional array |
| 91 | + fake_predict = disc(fake).view(-1) |
| 92 | + # ~~~~~~~~~~~~~~~~~~~ loss ~~~~~~~~~~~~~~~~~~~ # |
| 93 | + |
| 94 | + G_loss = criterion(fake_predict, torch.ones_like(fake_predict)) |
| 95 | + # ~~~~~~~~~~~~~~~~~~~ backward ~~~~~~~~~~~~~~~~~~~ # |
| 96 | + gen.zero_grad() |
| 97 | + G_loss.backward() |
| 98 | + gen_optim.step() |
| 99 | + |
| 100 | + # ~~~~~~~~~~~~~~~~~~~ loading the tensorboard ~~~~~~~~~~~~~~~~~~~ # |
| 101 | + |
| 102 | + if batch_idx == 0: |
| 103 | + print( |
| 104 | + f"Epoch [{epoch}/{EPOCHS}] Batch {batch_idx}/{len(loader)} \ |
| 105 | + Loss D: {D_loss:.4f}, loss G: {G_loss:.4f}" |
117 | 106 | )
|
| 107 | + |
| 108 | + with torch.no_grad(): |
| 109 | + disc.eval() |
| 110 | + gen.eval() |
| 111 | + fake = gen(fixed_noise).reshape(-1, CHANNELS, H, W) |
| 112 | + data = real.reshape(-1, CHANNELS, H, W) |
| 113 | + if BATCH_SIZE > 32: |
| 114 | + fake = fake[:32] |
| 115 | + data = data[:32] |
| 116 | + img_grid_fake = torchvision.utils.make_grid( |
| 117 | + fake, normalize=True) |
| 118 | + img_grid_real = torchvision.utils.make_grid( |
| 119 | + data, normalize=True) |
| 120 | + |
| 121 | + writer_fake.add_image( |
| 122 | + "Mnist Fake Images", img_grid_fake, global_step=epoch |
| 123 | + ) |
| 124 | + writer_real.add_image( |
| 125 | + "Mnist Real Images", img_grid_real, global_step=epoch |
| 126 | + ) |
| 127 | + |
| 128 | + # ~~~~~~~~~~~~~~~~~~~ saving the weights ~~~~~~~~~~~~~~~~~~~ # |
| 129 | + if D_loss_prev > D_loss: |
| 130 | + D_loss_prev = D_loss |
| 131 | + weight_path = str(Weight_dir/'dirscriminator.pth') |
| 132 | + torch.save(disc.state_dict(), weight_path) |
| 133 | + |
| 134 | + if G_loss_prev > G_loss: |
| 135 | + G_loss_prev = G_loss |
| 136 | + weight_path = str(Weight_dir/'generator.pth') |
| 137 | + torch.save(gen.state_dict(), weight_path) |
0 commit comments