Skip to content

[pull] master from comfyanonymous:master #119

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions comfy/model_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1014,9 +1014,30 @@ def extra_conds(self, **kwargs):
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)

denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)

out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
return out

def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])
return out

def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
sigma_noise_augmentation = 0 #TODO
if sigma_noise_augmentation != 0:
latent_image = latent_image + noise
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
sigma = (sigma / (sigma + 1))
return latent_image / (1.0 - sigma)

class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
Expand Down
15 changes: 10 additions & 5 deletions comfy/model_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -441,11 +441,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["rope_h_extrapolation_ratio"] = 4.0
dit_config["rope_w_extrapolation_ratio"] = 4.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["in_channels"] == 17:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 3.0
dit_config["rope_w_extrapolation_ratio"] = 3.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["in_channels"] == 17: # img to video
if dit_config["model_channels"] == 2048:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 3.0
dit_config["rope_w_extrapolation_ratio"] = 3.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["model_channels"] == 5120:
dit_config["rope_h_extrapolation_ratio"] = 2.0
dit_config["rope_w_extrapolation_ratio"] = 2.0
dit_config["rope_t_extrapolation_ratio"] = 0.8333333333333334

dit_config["extra_h_extrapolation_ratio"] = 1.0
dit_config["extra_w_extrapolation_ratio"] = 1.0
Expand Down
46 changes: 46 additions & 0 deletions comfy_extras/nodes_cosmos.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import torch
import comfy.model_management
import comfy.utils
import comfy.latent_formats


class EmptyCosmosLatentVideo:
Expand Down Expand Up @@ -75,8 +76,53 @@ def encode(self, vae, width, height, length, batch_size, start_image=None, end_i
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1))
return (out_latent,)

class CosmosPredict2ImageToVideoLatent:
@classmethod
def INPUT_TYPES(s):
return {"required": {"vae": ("VAE", ),
"width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 93, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"start_image": ("IMAGE", ),
"end_image": ("IMAGE", ),
}}


RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"

CATEGORY = "conditioning/inpaint"

def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None):
latent = torch.zeros([1, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is None and end_image is None:
out_latent = {}
out_latent["samples"] = latent
return (out_latent,)

mask = torch.ones([latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())

if start_image is not None:
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1)
latent[:, :, :latent_temp.shape[-3]] = latent_temp
mask[:, :, :latent_temp.shape[-3]] *= 0.0

if end_image is not None:
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0)
latent[:, :, -latent_temp.shape[-3]:] = latent_temp
mask[:, :, -latent_temp.shape[-3]:] *= 0.0

out_latent = {}
latent_format = comfy.latent_formats.Wan21()
latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask)
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1))
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1))
return (out_latent,)

NODE_CLASS_MAPPINGS = {
"EmptyCosmosLatentVideo": EmptyCosmosLatentVideo,
"CosmosImageToVideoLatent": CosmosImageToVideoLatent,
"CosmosPredict2ImageToVideoLatent": CosmosPredict2ImageToVideoLatent,
}
Loading