Skip to content

Update polynomial.md #1491

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 8, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/algebra/polynomial.md
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ This algorithm was mentioned in [Schönhage's article](http://algo.inria.fr/semi

$$A^{-1}(x) \equiv \frac{1}{A(x)} \equiv \frac{A(-x)}{A(x)A(-x)} \equiv \frac{A(-x)}{T(x^2)} \pmod{x^k}$$

Note that $T(x)$ can be computed with a single multiplication, after which we're only interested in the first half of coefficients of its inverse series. This effectively reduces the initial problem of computing $A^{-1} \pmod{x^k}$ to computing $T^{-1} \pmod{x^{\lfloor k / 2 \rfloor}}$.
Note that $T(x)$ can be computed with a single multiplication, after which we're only interested in the first half of coefficients of its inverse series. This effectively reduces the initial problem of computing $A^{-1} \pmod{x^k}$ to computing $T^{-1} \pmod{x^{\lceil k / 2 \rceil}}$.

The complexity of this method can be estimated as

Expand Down