Skip to content

Update guidance for linalg rtol tolerance cutoff to accommodate non-SVD-like algorithms #304

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 4, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions spec/extensions/linear_algebra_functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,7 @@ Returns the rank (i.e., number of non-zero singular values) of a matrix (or a st

- **rtol**: _Optional\[ Union\[ float, <array> ] ]_

- relative tolerance for small singular values. Singular values less than or equal to `rtol * largest_singular_value` are set to zero. If a `float`, the value is equivalent to a zero-dimensional array having a floating-point data type determined by {ref}`type-promotion` (as applied to `x`) and must be broadcast against each matrix. If an `array`, must have a floating-point data type and must be compatible with `shape(x)[:-2]` (see {ref}`broadcasting`). If `None`, the default value is `max(M, N) * eps`, where `eps` must be the machine epsilon associated with the floating-point data type determined by {ref}`type-promotion` (as applied to `x`). Default: `None`.
- relative tolerance for small singular values. Singular values approximately less than or equal to `rtol * largest_singular_value` are set to zero. If a `float`, the value is equivalent to a zero-dimensional array having a floating-point data type determined by {ref}`type-promotion` (as applied to `x`) and must be broadcast against each matrix. If an `array`, must have a floating-point data type and must be compatible with `shape(x)[:-2]` (see {ref}`broadcasting`). If `None`, the default value is `max(M, N) * eps`, where `eps` must be the machine epsilon associated with the floating-point data type determined by {ref}`type-promotion` (as applied to `x`). Default: `None`.

#### Returns

Expand Down Expand Up @@ -392,7 +392,7 @@ Returns the (Moore-Penrose) pseudo-inverse of a matrix (or a stack of matrices)

- **rtol**: _Optional\[ Union\[ float, <array> ] ]_

- relative tolerance for small singular values. Singular values less than or equal to `rtol * largest_singular_value` are set to zero. If a `float`, the value is equivalent to a zero-dimensional array having a floating-point data type determined by {ref}`type-promotion` (as applied to `x`) and must be broadcast against each matrix. If an `array`, must have a floating-point data type and must be compatible with `shape(x)[:-2]` (see {ref}`broadcasting`). If `None`, the default value is `max(M, N) * eps`, where `eps` must be the machine epsilon associated with the floating-point data type determined by {ref}`type-promotion` (as applied to `x`). Default: `None`.
- relative tolerance for small singular values. Singular values approximately less than or equal to `rtol * largest_singular_value` are set to zero. If a `float`, the value is equivalent to a zero-dimensional array having a floating-point data type determined by {ref}`type-promotion` (as applied to `x`) and must be broadcast against each matrix. If an `array`, must have a floating-point data type and must be compatible with `shape(x)[:-2]` (see {ref}`broadcasting`). If `None`, the default value is `max(M, N) * eps`, where `eps` must be the machine epsilon associated with the floating-point data type determined by {ref}`type-promotion` (as applied to `x`). Default: `None`.

#### Returns

Expand Down