Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions mypy.ini
Original file line number Diff line number Diff line change
Expand Up @@ -44,3 +44,6 @@ ignore_missing_imports = True

[mypy-anywidget]
ignore_missing_imports = True

[mypy-pandas_gbq]
ignore_missing_imports = True
27 changes: 27 additions & 0 deletions scripts/run_and_publish_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ def collect_benchmark_result(
bq_seconds_files = sorted(path.rglob("*.bq_exec_time_seconds"))
local_seconds_files = sorted(path.rglob("*.local_exec_time_seconds"))
query_char_count_files = sorted(path.rglob("*.query_char_count"))
total_rows_files = sorted(path.rglob("*.totalrows"))

error_files = sorted(path.rglob("*.error"))

Expand All @@ -109,6 +110,7 @@ def collect_benchmark_result(
)

has_full_metrics = len(bq_seconds_files) == len(local_seconds_files)
has_total_rows = len(total_rows_files) == len(local_seconds_files)

for idx in range(len(local_seconds_files)):
query_char_count_file = query_char_count_files[idx]
Expand Down Expand Up @@ -156,13 +158,27 @@ def collect_benchmark_result(
lines = file.read().splitlines()
bq_seconds = sum(float(line) for line in lines) / iterations

if not has_total_rows:
total_rows = None
else:
total_rows_file = total_rows_files[idx]
if filename != total_rows_file.relative_to(path).with_suffix(""):
raise ValueError(
"File name mismatch among query_char_count, bytes, and total_rows reports."
)

with open(total_rows_file, "r") as file:
lines = file.read().splitlines()
total_rows = sum(int(line) for line in lines) / iterations

results_dict[str(filename)] = [
query_count,
total_bytes,
total_slot_millis,
local_seconds,
bq_seconds,
query_char_count,
total_rows,
]
finally:
for files_to_remove in (
Expand All @@ -171,6 +187,7 @@ def collect_benchmark_result(
path.rglob("*.local_exec_time_seconds"),
path.rglob("*.bq_exec_time_seconds"),
path.rglob("*.query_char_count"),
path.rglob("*.totalrows"),
path.rglob("*.error"),
):
for log_file in files_to_remove:
Expand All @@ -183,6 +200,7 @@ def collect_benchmark_result(
"Local_Execution_Time_Sec",
"BigQuery_Execution_Time_Sec",
"Query_Char_Count",
"Total_Rows",
]

benchmark_metrics = pd.DataFrame.from_dict(
Expand All @@ -206,6 +224,11 @@ def collect_benchmark_result(
print(
f"{index} - query count: {row['Query_Count']},"
+ f" query char count: {row['Query_Char_Count']},"
+ (
f" total rows: {row['Total_Rows']},"
if not pd.isna(row["Total_Rows"])
else ""
)
+ f" bytes processed sum: {row['Bytes_Processed']},"
+ (f" slot millis sum: {row['Slot_Millis']}," if has_full_metrics else "")
+ f" local execution time: {formatted_local_exec_time} seconds"
Expand Down Expand Up @@ -234,10 +257,14 @@ def collect_benchmark_result(
geometric_mean_bq_seconds = geometric_mean_excluding_zeros(
benchmark_metrics["BigQuery_Execution_Time_Sec"]
)
geometric_mean_total_rows = geometric_mean_excluding_zeros(
benchmark_metrics["Total_Rows"]
)

print(
f"---Geometric mean of queries: {geometric_mean_queries},"
+ f" Geometric mean of queries char counts: {geometric_mean_query_char_count},"
+ f" Geometric mean of total rows: {geometric_mean_total_rows},"
+ f" Geometric mean of bytes processed: {geometric_mean_bytes},"
+ (
f" Geometric mean of slot millis: {geometric_mean_slot_millis},"
Expand Down
57 changes: 57 additions & 0 deletions tests/system/small/test_run_and_publish_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
import sys

# Add the project root to the Python path to allow for application-specific imports.
sys.path.insert(0, str(Path(__file__).resolve().parents[3]))

from scripts import run_and_publish_benchmark # noqa: E402


def test_collect_benchmark_result(tmp_path: Path):
"""Tests the collect_benchmark_result function.

This test verifies that the function correctly reads benchmark result
files from a specified directory, processes them, and returns a
pandas DataFrame with the expected data and types.

Args:
tmp_path (Path): The pytest fixture providing a temporary directory path.
"""
# Arrange: Create dummy log files with benchmark data.
(tmp_path / "benchmark1.bytesprocessed").write_text("100")
(tmp_path / "benchmark1.slotmillis").write_text("1000")
(tmp_path / "benchmark1.bq_exec_time_seconds").write_text("1.0")
(tmp_path / "benchmark1.local_exec_time_seconds").write_text("2.0")
(tmp_path / "benchmark1.query_char_count").write_text("50")
(tmp_path / "benchmark1.totalrows").write_text("10")

# Act: Collect the benchmark results from the temporary directory.
# The second argument '1' is a placeholder for the number of runs.
df, error_message = run_and_publish_benchmark.collect_benchmark_result(
str(tmp_path), 1
)

# Assert: Verify the contents and structure of the resulting DataFrame.
assert error_message is None, "Expected no error messages."
assert len(df) == 1, "DataFrame should contain exactly one row."
assert df["Benchmark_Name"][0] == "benchmark1"
assert df["Bytes_Processed"][0] == 100
assert df["Slot_Millis"][0] == 1000
assert df["BigQuery_Execution_Time_Sec"][0] == 1.0
assert df["Local_Execution_Time_Sec"][0] == 2.0
assert df["Query_Char_Count"][0] == 50
assert df["Total_Rows"][0] == 10