Skip to content
This repository was archived by the owner on Oct 29, 2024. It is now read-only.

Convert NaN values to None in numpy arrays. #204

Merged
merged 1 commit into from
Jul 5, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 21 additions & 7 deletions influxdb/influxdb08/dataframe_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,18 +15,17 @@ class DataFrameClient(InfluxDBClient):
The client reads and writes from pandas DataFrames.
"""

def __init__(self, *args, **kwargs):
def __init__(self, ignore_nan=True, *args, **kwargs):
super(DataFrameClient, self).__init__(*args, **kwargs)

try:
global pd
import pandas as pd
except ImportError as ex:
raise ImportError(
'DataFrameClient requires Pandas, "{ex}" problem importing'
.format(ex=str(ex))
)

raise ImportError('DataFrameClient requires Pandas, '
'"{ex}" problem importing'.format(ex=str(ex)))
self.EPOCH = pd.Timestamp('1970-01-01 00:00:00.000+00:00')
self.ignore_nan = ignore_nan

def write_points(self, data, *args, **kwargs):
"""
Expand Down Expand Up @@ -135,9 +134,24 @@ def _convert_dataframe_to_json(self, dataframe, name, time_precision='s'):
for dt in dataframe.index]
data = {'name': name,
'columns': [str(column) for column in dataframe.columns],
'points': list([list(x) for x in dataframe.values])}
'points': [self._convert_array(x) for x in dataframe.values]}
return data

def _convert_array(self, array):
try:
global np
import numpy as np
except ImportError as ex:
raise ImportError('DataFrameClient requires Numpy, '
'"{ex}" problem importing'.format(ex=str(ex)))
if self.ignore_nan:
number_types = (int, float, np.number)
condition = (all(isinstance(el, number_types) for el in array) and
np.isnan(array))
return list(np.where(condition, None, array))
else:
return list(array)

def _datetime_to_epoch(self, datetime, time_precision='s'):
seconds = (datetime - self.EPOCH).total_seconds()
if time_precision == 's':
Expand Down
26 changes: 26 additions & 0 deletions tests/influxdb/influxdb08/dataframe_client_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,32 @@ def test_write_points_from_dataframe(self):

self.assertListEqual(json.loads(m.last_request.body), points)

def test_write_points_from_dataframe_with_float_nan(self):
now = pd.Timestamp('1970-01-01 00:00+00:00')
dataframe = pd.DataFrame(data=[[1, float("NaN"), 1.0], [2, 2, 2.0]],
index=[now, now + timedelta(hours=1)],
columns=["column_one", "column_two",
"column_three"])
points = [
{
"points": [
[1, None, 1.0, 0],
[2, 2, 2.0, 3600]
],
"name": "foo",
"columns": ["column_one", "column_two", "column_three", "time"]
}
]

with requests_mock.Mocker() as m:
m.register_uri(requests_mock.POST,
"http://localhost:8086/db/db/series")

cli = DataFrameClient(database='db')
cli.write_points({"foo": dataframe})

self.assertListEqual(json.loads(m.last_request.body), points)

def test_write_points_from_dataframe_in_batches(self):
now = pd.Timestamp('1970-01-01 00:00+00:00')
dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]],
Expand Down