|
| 1 | +# Handling Missing Values in Pandas |
| 2 | + |
| 3 | +In real life, many datasets arrive with missing data either because it exists and was not collected or it never existed. |
| 4 | + |
| 5 | +In Pandas missing data is represented by two values: |
| 6 | + |
| 7 | +* `None` : None is simply is `keyword` refer as empty or none. |
| 8 | +* `NaN` : Acronym for `Not a Number`. |
| 9 | + |
| 10 | +There are several useful functions for detecting, removing, and replacing null values in Pandas DataFrame: |
| 11 | + |
| 12 | +1. `isnull()` |
| 13 | +2. `notnull()` |
| 14 | +3. `dropna()` |
| 15 | +4. `fillna()` |
| 16 | +5. `replace()` |
| 17 | + |
| 18 | +## 2. Checking for missing values using `isnull()` and `notnull()` |
| 19 | + |
| 20 | +Let's import pandas and our fancy car-sales dataset having some missing values. |
| 21 | + |
| 22 | +```python |
| 23 | +import pandas as pd |
| 24 | + |
| 25 | +car_sales_missing_df = pd.read_csv("Datasets/car-sales-missing-data.csv") |
| 26 | +print(car_sales_missing_df) |
| 27 | +``` |
| 28 | + |
| 29 | + Make Colour Odometer Doors Price |
| 30 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 31 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 32 | + 2 Toyota Blue NaN 3.0 $7,000 |
| 33 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 34 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 35 | + 5 Toyota Green NaN 4.0 $4,500 |
| 36 | + 6 Honda NaN NaN 4.0 $7,500 |
| 37 | + 7 Honda Blue NaN 4.0 NaN |
| 38 | + 8 Toyota White 60000.0 NaN NaN |
| 39 | + 9 NaN White 31600.0 4.0 $9,700 |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +```python |
| 44 | +## Using isnull() |
| 45 | + |
| 46 | +print(car_sales_missing_df.isnull()) |
| 47 | +``` |
| 48 | + |
| 49 | + Make Colour Odometer Doors Price |
| 50 | + 0 False False False False False |
| 51 | + 1 False False False False False |
| 52 | + 2 False False True False False |
| 53 | + 3 False False False False False |
| 54 | + 4 False False False False False |
| 55 | + 5 False False True False False |
| 56 | + 6 False True True False False |
| 57 | + 7 False False True False True |
| 58 | + 8 False False False True True |
| 59 | + 9 True False False False False |
| 60 | + |
| 61 | + |
| 62 | +Note here: |
| 63 | +* `True` means for `NaN` values |
| 64 | +* `False` means for no `Nan` values |
| 65 | + |
| 66 | +If we want to find the number of missing values in each column use `isnull().sum()`. |
| 67 | + |
| 68 | + |
| 69 | +```python |
| 70 | +print(car_sales_missing_df.isnull().sum()) |
| 71 | +``` |
| 72 | + |
| 73 | + Make 1 |
| 74 | + Colour 1 |
| 75 | + Odometer 4 |
| 76 | + Doors 1 |
| 77 | + Price 2 |
| 78 | + dtype: int64 |
| 79 | + |
| 80 | + |
| 81 | +You can also check presense of null values in a single column. |
| 82 | + |
| 83 | + |
| 84 | +```python |
| 85 | +print(car_sales_missing_df["Odometer"].isnull()) |
| 86 | +``` |
| 87 | + |
| 88 | + 0 False |
| 89 | + 1 False |
| 90 | + 2 True |
| 91 | + 3 False |
| 92 | + 4 False |
| 93 | + 5 True |
| 94 | + 6 True |
| 95 | + 7 True |
| 96 | + 8 False |
| 97 | + 9 False |
| 98 | + Name: Odometer, dtype: bool |
| 99 | + |
| 100 | + |
| 101 | + |
| 102 | +```python |
| 103 | +## using notnull() |
| 104 | + |
| 105 | +print(car_sales_missing_df.notnull()) |
| 106 | +``` |
| 107 | + |
| 108 | + Make Colour Odometer Doors Price |
| 109 | + 0 True True True True True |
| 110 | + 1 True True True True True |
| 111 | + 2 True True False True True |
| 112 | + 3 True True True True True |
| 113 | + 4 True True True True True |
| 114 | + 5 True True False True True |
| 115 | + 6 True False False True True |
| 116 | + 7 True True False True False |
| 117 | + 8 True True True False False |
| 118 | + 9 False True True True True |
| 119 | + |
| 120 | + |
| 121 | +Note here: |
| 122 | +* `True` means no `NaN` values |
| 123 | +* `False` means for `NaN` values |
| 124 | + |
| 125 | +`isnull()` means having null values so it gives boolean `True` for NaN values. And `notnull()` means having no null values so it gives `True` for no NaN value. |
| 126 | + |
| 127 | +## 2. Filling missing values using `fillna()`, `replace()`. |
| 128 | + |
| 129 | + |
| 130 | +```python |
| 131 | +## Filling missing values with a single value using `fillna` |
| 132 | +print(car_sales_missing_df.fillna(0)) |
| 133 | +``` |
| 134 | + |
| 135 | + Make Colour Odometer Doors Price |
| 136 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 137 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 138 | + 2 Toyota Blue 0.0 3.0 $7,000 |
| 139 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 140 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 141 | + 5 Toyota Green 0.0 4.0 $4,500 |
| 142 | + 6 Honda 0 0.0 4.0 $7,500 |
| 143 | + 7 Honda Blue 0.0 4.0 0 |
| 144 | + 8 Toyota White 60000.0 0.0 0 |
| 145 | + 9 0 White 31600.0 4.0 $9,700 |
| 146 | + |
| 147 | + |
| 148 | + |
| 149 | +```python |
| 150 | +## Filling missing values with the previous value using `ffill()` |
| 151 | +print(car_sales_missing_df.ffill()) |
| 152 | +``` |
| 153 | + |
| 154 | + Make Colour Odometer Doors Price |
| 155 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 156 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 157 | + 2 Toyota Blue 87899.0 3.0 $7,000 |
| 158 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 159 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 160 | + 5 Toyota Green 213095.0 4.0 $4,500 |
| 161 | + 6 Honda Green 213095.0 4.0 $7,500 |
| 162 | + 7 Honda Blue 213095.0 4.0 $7,500 |
| 163 | + 8 Toyota White 60000.0 4.0 $7,500 |
| 164 | + 9 Toyota White 31600.0 4.0 $9,700 |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | +```python |
| 169 | +## illing null value with the next ones using 'bfill()' |
| 170 | +print(car_sales_missing_df.bfill()) |
| 171 | +``` |
| 172 | + |
| 173 | + Make Colour Odometer Doors Price |
| 174 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 175 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 176 | + 2 Toyota Blue 11179.0 3.0 $7,000 |
| 177 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 178 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 179 | + 5 Toyota Green 60000.0 4.0 $4,500 |
| 180 | + 6 Honda Blue 60000.0 4.0 $7,500 |
| 181 | + 7 Honda Blue 60000.0 4.0 $9,700 |
| 182 | + 8 Toyota White 60000.0 4.0 $9,700 |
| 183 | + 9 NaN White 31600.0 4.0 $9,700 |
| 184 | + |
| 185 | + |
| 186 | +#### Filling a null values using `replace()` method |
| 187 | + |
| 188 | +Now we are going to replace the all `NaN` value in the data frame with -125 value |
| 189 | + |
| 190 | +For this we will also need numpy |
| 191 | + |
| 192 | + |
| 193 | +```python |
| 194 | +import numpy as np |
| 195 | + |
| 196 | +print(car_sales_missing_df.replace(to_replace = np.nan, value = -125)) |
| 197 | +``` |
| 198 | + |
| 199 | + Make Colour Odometer Doors Price |
| 200 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 201 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 202 | + 2 Toyota Blue -125.0 3.0 $7,000 |
| 203 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 204 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 205 | + 5 Toyota Green -125.0 4.0 $4,500 |
| 206 | + 6 Honda -125 -125.0 4.0 $7,500 |
| 207 | + 7 Honda Blue -125.0 4.0 -125 |
| 208 | + 8 Toyota White 60000.0 -125.0 -125 |
| 209 | + 9 -125 White 31600.0 4.0 $9,700 |
| 210 | + |
| 211 | + |
| 212 | +## 3. Dropping missing values using `dropna()` |
| 213 | + |
| 214 | +In order to drop a null values from a dataframe, we used `dropna()` function this function drop Rows/Columns of datasets with Null values in different ways. |
| 215 | + |
| 216 | +#### Dropping rows with at least 1 null value. |
| 217 | + |
| 218 | + |
| 219 | +```python |
| 220 | +print(car_sales_missing_df.dropna(axis = 0)) ##Now we drop rows with at least one Nan value (Null value) |
| 221 | +``` |
| 222 | + |
| 223 | + Make Colour Odometer Doors Price |
| 224 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 225 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 226 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 227 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 228 | + |
| 229 | + |
| 230 | +#### Dropping rows if all values in that row are missing. |
| 231 | + |
| 232 | + |
| 233 | +```python |
| 234 | +print(car_sales_missing_df.dropna(how = 'all',axis = 0)) ## If not have leave the row as it is |
| 235 | +``` |
| 236 | + |
| 237 | + Make Colour Odometer Doors Price |
| 238 | + 0 Toyota White 150043.0 4.0 $4,000 |
| 239 | + 1 Honda Red 87899.0 4.0 $5,000 |
| 240 | + 2 Toyota Blue NaN 3.0 $7,000 |
| 241 | + 3 BMW Black 11179.0 5.0 $22,000 |
| 242 | + 4 Nissan White 213095.0 4.0 $3,500 |
| 243 | + 5 Toyota Green NaN 4.0 $4,500 |
| 244 | + 6 Honda NaN NaN 4.0 $7,500 |
| 245 | + 7 Honda Blue NaN 4.0 NaN |
| 246 | + 8 Toyota White 60000.0 NaN NaN |
| 247 | + 9 NaN White 31600.0 4.0 $9,700 |
| 248 | + |
| 249 | + |
| 250 | +#### Dropping columns with at least 1 null value |
| 251 | + |
| 252 | + |
| 253 | +```python |
| 254 | +print(car_sales_missing_df.dropna(axis = 1)) |
| 255 | +``` |
| 256 | + |
| 257 | + Empty DataFrame |
| 258 | + Columns: [] |
| 259 | + Index: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] |
| 260 | + |
| 261 | + |
| 262 | +Now we drop a columns which have at least 1 missing values. |
| 263 | + |
| 264 | +Here the dataset becomes empty after `dropna()` because each column as atleast 1 null value so it remove that columns resulting in an empty dataframe. |
0 commit comments