Skip to content

Commit ed0ea4b

Browse files
authored
Merge pull request animator#674 from Santhosh-Siddhardha/main
Added Content on NumPy Array Iteration under NumPy module
2 parents 33ef1e2 + 3bebec3 commit ed0ea4b

File tree

2 files changed

+121
-0
lines changed

2 files changed

+121
-0
lines changed

contrib/numpy/array-iteration.md

Lines changed: 120 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,120 @@
1+
# NumPy Array Iteration
2+
3+
Iterating over arrays in NumPy is a common task when processing data. NumPy provides several ways to iterate over elements of an array efficiently.
4+
Understanding these methods is crucial for performing operations on array elements effectively.
5+
6+
## 1. Basic Iteration
7+
8+
- Iterating using basic `for` loop.
9+
10+
### Single-dimensional array
11+
12+
Iterating over a single-dimensional array is straightforward using a basic `for` loop
13+
14+
```python
15+
import numpy as np
16+
17+
arr = np.array([1, 2, 3, 4, 5])
18+
for i in arr:
19+
print(i)
20+
```
21+
22+
#### Output
23+
24+
```python
25+
1
26+
2
27+
3
28+
4
29+
5
30+
```
31+
32+
### Multi-dimensional array
33+
34+
Iterating over multi-dimensional arrays, each iteration returns a sub-array along the first axis.
35+
36+
```python
37+
marr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
38+
39+
for arr in marr:
40+
print(arr)
41+
```
42+
43+
#### Output
44+
45+
```python
46+
[1 2 3]
47+
[4 5 6]
48+
[7 8 9]
49+
```
50+
51+
## 2. Iterating with `nditer`
52+
53+
- `nditer` is a powerful iterator provided by NumPy for iterating over multi-dimensional arrays.
54+
- In each interation it gives each element.
55+
56+
```python
57+
import numpy as np
58+
59+
arr = np.array([[1, 2, 3], [4, 5, 6]])
60+
for i in np.nditer(arr):
61+
print(i)
62+
```
63+
64+
#### Output
65+
66+
```python
67+
1
68+
2
69+
3
70+
4
71+
5
72+
6
73+
```
74+
75+
## 3. Iterating with `ndenumerate`
76+
77+
- `ndenumerate` allows you to iterate with both the index and the value of each element.
78+
- It gives index and value as output in each iteration
79+
80+
```python
81+
import numpy as np
82+
83+
arr = np.array([[1, 2], [3, 4]])
84+
for index,value in np.ndenumerate(arr):
85+
print(index,value)
86+
```
87+
88+
#### Output
89+
90+
```python
91+
(0, 0) 1
92+
(0, 1) 2
93+
(1, 0) 3
94+
(1, 1) 4
95+
```
96+
97+
## 4. Iterating with flat
98+
99+
- The `flat` attribute returns a 1-D iterator over the array.
100+
101+
```python
102+
import numpy as np
103+
104+
arr = np.array([[1, 2], [3, 4]])
105+
for element in arr.flat:
106+
print(element)
107+
```
108+
109+
#### Output
110+
111+
```python
112+
1
113+
2
114+
3
115+
4
116+
```
117+
118+
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
119+
120+
Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.

contrib/numpy/index.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,4 +8,5 @@
88
- [Loading Arrays from Files](loading_arrays_from_files.md)
99
- [Saving Numpy Arrays into FIles](saving_numpy_arrays_to_files.md)
1010
- [Sorting NumPy Arrays](sorting-array.md)
11+
- [NumPy Array Iteration](array-iteration.md)
1112
- [Concatenation of Arrays](concatenation-of-arrays.md)

0 commit comments

Comments
 (0)