-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecommend.py
192 lines (160 loc) · 7.86 KB
/
recommend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# =============================================================================
# AUSTRALIAN NATIONAL UNIVERSITY OPEN SOURCE LICENSE (ANUOS LICENSE)
# VERSION 1.3
#
# The contents of this file are subject to the ANUOS License Version 1.2
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at:
#
# http://datamining.anu.edu.au/linkage.html
#
# Software distributed under the License is distributed on an "AS IS"
# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
# the License for the specific language governing rights and limitations
# under the License.
#
# The Original Software is: "test.py"
#
# The Initial Developers of the Original Software are:
# Peter Christen
#
# Copyright (C) 2002 - 2011 the Australian National University and
# others. All Rights Reserved.
#
# Contributors:
#
# Alternatively, the contents of this file may be used under the terms
# of the GNU General Public License Version 2 or later (the "GPL"), in
# which case the provisions of the GPL are applicable instead of those
# above. The GPL is available at the following URL: http://www.gnu.org/
# If you wish to allow use of your version of this file only under the
# terms of the GPL, and not to allow others to use your version of this
# file under the terms of the ANUOS License, indicate your decision by
# deleting the provisions above and replace them with the notice and
# other provisions required by the GPL. If you do not delete the
# provisions above, a recipient may use your version of this file under
# the terms of any one of the ANUOS License or the GPL.
# =============================================================================
# =============================================================================
# Start of Febrl project module: "test.py"
#
# Generated using "guiFebrl.py" on Fri Nov 9 16:43:05 2012
# =============================================================================
# Import necessary modules (Python standard modules first, then Febrl modules)
import logging
import classification
import comparison
import dataset
import encode
import indexing
import measurements
import mymath
import output
import stringcmp
# -----------------------------------------------------------------------------
# Intialise a logger, set level to info oe warning
#
log_level = logging.INFO # logging.WARNING
my_logger = logging.getLogger()
my_logger.setLevel(log_level)
# -----------------------------------------------------------------------------
# Febrl project type: Deduplicate
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Define input data set A:
#
data_set_a = dataset.DataSetCSV(description="Data set generated by Febrl GUI",
access_mode="read",
strip_fields=True,
miss_val=[''],
rec_ident="ID",
file_name="/home/jclark/projects/dpla_appfest/test_sample.csv",
header_line=True,
delimiter=",",
field_list = [("ID",0),
("Title",1),
("Creator",2),
("Subject",3),
("Publisher",4),
("Description",5),
("Type",6)])
# -----------------------------------------------------------------------------
# Define field comparison functions
#
fc_funct_1 = comparison.FieldComparatorWinkler(agree_weight = 1.0,
description = "Winkler-Subject-Subject",
disagree_weight = 0.0,
missing_weight = 0.0,
threshold = 0.0,
check_sim = True,
check_init = True,
check_long = True)
fc_funct_2 = comparison.FieldComparatorWinkler(agree_weight = 1.0,
description = "Winkler-Creator-Creator",
disagree_weight = 0.0,
missing_weight = 0.0,
threshold = 0.0,
check_sim = True,
check_init = True,
check_long = True)
fc_funct_3 = comparison.FieldComparatorWinkler(agree_weight = 1.0,
description = "Winkler-Title-Title",
disagree_weight = 0.0,
missing_weight = 0.0,
threshold = 0.0,
check_sim = True,
check_init = True,
check_long = True)
fc_funct_4 = comparison.FieldComparatorWinkler(agree_weight = 1.0,
description = "Winkler-Description-Description",
disagree_weight = 0.0,
missing_weight = 0.0,
threshold = 0.0,
check_sim = True,
check_init = True,
check_long = True)
field_comp_list = [(fc_funct_1, "Subject", "Subject"),
(fc_funct_2, "Creator", "Creator"),
(fc_funct_3, "Title", "Title"),
(fc_funct_4, "Description", "Description")]
rec_comp = comparison.RecordComparator(data_set_a, data_set_a, field_comp_list)
# -----------------------------------------------------------------------------
# Define indices for "blocking"
#
index = indexing.FullIndex(dataset1 = data_set_a,
dataset2 = data_set_a,
weight_vec_file = "/home/jclark/projects/dpla_appfest/match_weights",
progress_report = 1,
rec_comparator = rec_comp,
index_sep_str = "",
skip_missing = True,
index_def = [])
# Build and compact index
#
index.build()
index.compact()
# Do record pair comparisons
#
index.run()
[field_names_list, w_vec_dict] = output.LoadWeightVectorFile("/home/jclark/projects/dpla_appfest/match_weights")
# -----------------------------------------------------------------------------
# Define weight vector (record pair) classifier
#
classifier = classification.FellegiSunter(lower_threshold = 2.85,
upper_threshold = 4)
# Unsupervised training of classifier
#
class_w_vec_dict = w_vec_dict # Use orignal weight vector dictionary
classifier.train(class_w_vec_dict, set(), set())
# Classify all weight vectors
#
[m_set, nm_set, pm_set] = classifier.classify(class_w_vec_dict)
# -----------------------------------------------------------------------------
# Define output file options
#
histo_str_list = output.GenerateHistogram(class_w_vec_dict, 1.0)
for line in histo_str_list:
print line
# =============================================================================
# End of Febrl project module: "test.py"
# =============================================================================