Skip to content

update to latest ggml #134

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jan 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 1 addition & 8 deletions clip.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -443,16 +443,13 @@ struct ResidualAttentionBlock {
struct ggml_tensor* ln2_w; // [hidden_size, ]
struct ggml_tensor* ln2_b; // [hidden_size, ]

struct ggml_tensor* attn_scale; // [hidden_size, ]

size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += 4 * hidden_size * hidden_size * ggml_type_sizef(wtype); // q_w/k_w/v_w/out_w
mem_size += 8 * hidden_size * ggml_type_sizef(GGML_TYPE_F32); // q_b/k_b/v_b/out_b/ln1_w/ln1_b/ln2_w/ln2_b
mem_size += 2 * hidden_size * intermediate_size * ggml_type_sizef(wtype); // fc1_w/fc2_w
mem_size += intermediate_size * ggml_type_sizef(GGML_TYPE_F32); // fc1_b
mem_size += hidden_size * ggml_type_sizef(GGML_TYPE_F32); // fc2_b
mem_size += ggml_type_sizef(GGML_TYPE_F32); // attn_scale
return static_cast<size_t>(mem_size);
}

Expand All @@ -479,10 +476,6 @@ struct ResidualAttentionBlock {
ln2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
ln2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);

attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, attn_scale);
float scale = 1.0f / sqrt((float)d_model);
ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale));
}

void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
Expand Down Expand Up @@ -521,7 +514,7 @@ struct ResidualAttentionBlock {
// self-attention
{
struct ggml_tensor* q = ggml_nn_linear(ctx, x, q_w, q_b);
q = ggml_scale_inplace(ctx, q, attn_scale);
q = ggml_scale_inplace(ctx, q, 1.0f / sqrt((float)d_model));
q = ggml_reshape_4d(ctx, q, d_model, n_head, n_token, N); // [N, n_token, n_head, d_model]
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, n_token, d_model]
q = ggml_reshape_3d(ctx, q, d_model, n_token, n_head * N); // [N * n_head, n_token, d_model]
Expand Down
15 changes: 5 additions & 10 deletions esrgan.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ struct ResidualDenseBlock {
tensors[prefix + "conv5.bias"] = conv5_b;
}

ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x /* feat */) {
ggml_tensor* forward(ggml_context* ctx, float out_scale, ggml_tensor* x /* feat */) {
// x1 = self.lrelu(self.conv1(x))
ggml_tensor* x1 = ggml_nn_conv_2d(ctx, x, conv1_w, conv1_b, 1, 1, 1, 1);
x1 = ggml_leaky_relu(ctx, x1, 0.2f, true);
Expand Down Expand Up @@ -161,7 +161,7 @@ struct EsrganBlock {
}
}

ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x) {
ggml_tensor* forward(ggml_context* ctx, float out_scale, ggml_tensor* x) {
ggml_tensor* out = x;
for (int i = 0; i < num_residual_blocks; i++) {
// out = self.rdb...(x)
Expand Down Expand Up @@ -325,7 +325,7 @@ struct ESRGAN : public GGMLModule {
tensors["conv_last.bias"] = conv_last_b;
}

ggml_tensor* forward(ggml_context* ctx0, ggml_tensor* out_scale, ggml_tensor* x /* feat */) {
ggml_tensor* forward(ggml_context* ctx0, float out_scale, ggml_tensor* x /* feat */) {
// feat = self.conv_first(feat)
auto h = ggml_nn_conv_2d(ctx0, x, conv_first_w, conv_first_b, 1, 1, 1, 1);

Expand Down Expand Up @@ -376,12 +376,7 @@ struct ESRGAN : public GGMLModule {
struct ggml_cgraph* gf = ggml_new_graph(ctx0);

struct ggml_tensor* x_ = NULL;
struct ggml_tensor* os = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(compute_allocr, os);
if (!ggml_allocr_is_measure(compute_allocr)) {
float scale = 0.2f;
ggml_backend_tensor_set(os, &scale, 0, sizeof(scale));
}
float out_scale = 0.2f;

// it's performing a compute, check if backend isn't cpu
if (!ggml_backend_is_cpu(backend)) {
Expand All @@ -397,7 +392,7 @@ struct ESRGAN : public GGMLModule {
x_ = x;
}

struct ggml_tensor* out = forward(ctx0, os, x);
struct ggml_tensor* out = forward(ctx0, out_scale, x);

ggml_build_forward_expand(gf, out);
ggml_free(ctx0);
Expand Down
2 changes: 1 addition & 1 deletion ggml
2 changes: 1 addition & 1 deletion ggml_extend.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -449,7 +449,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ct
struct ggml_tensor* w,
struct ggml_tensor* b,
int num_groups = 32) {
if (x->n_dims == 4) {
if (ggml_n_dims(x) >= 3) {
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
}
Expand Down
15 changes: 4 additions & 11 deletions lora.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ struct LoraModel : public GGMLModule {
applied_lora_tensors.insert(scale_name);

// calc_cale
int64_t dim = lora_down->ne[lora_down->n_dims - 1];
int64_t dim = lora_down->ne[ggml_n_dims(lora_down) - 1];
float scale_value = 1.0f;
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
Expand All @@ -123,17 +123,10 @@ struct LoraModel : public GGMLModule {
}
scale_value *= multiplier;

ggml_tensor* lora_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);

ggml_allocr_alloc(compute_allocr, lora_scale);
if (!ggml_allocr_is_measure(compute_allocr)) {
ggml_backend_tensor_set(lora_scale, &scale_value, 0, ggml_nbytes(lora_scale));
}

// flat lora tensors to multiply it
int64_t lora_up_rows = lora_up->ne[lora_up->n_dims - 1];
int64_t lora_up_rows = lora_up->ne[ggml_n_dims(lora_up) - 1];
lora_up = ggml_reshape_2d(ctx0, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows);
int64_t lora_down_rows = lora_down->ne[lora_down->n_dims - 1];
int64_t lora_down_rows = lora_down->ne[ggml_n_dims(lora_down) - 1];
lora_down = ggml_reshape_2d(ctx0, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows);

// ggml_mul_mat requires tensor b transposed
Expand All @@ -142,7 +135,7 @@ struct LoraModel : public GGMLModule {
updown = ggml_cont(ctx0, ggml_transpose(ctx0, updown));
updown = ggml_reshape(ctx0, updown, weight);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight));
updown = ggml_scale_inplace(ctx0, updown, lora_scale);
updown = ggml_scale_inplace(ctx0, updown, scale_value);
ggml_tensor* final_weight;
// if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
// final_weight = ggml_new_tensor(ctx0, GGML_TYPE_F32, weight->n_dims, weight->ne);
Expand Down
5 changes: 4 additions & 1 deletion model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -673,7 +673,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s

// LOG_DEBUG("%s", name.c_str());

TensorStorage tensor_storage(prefix + name, dummy->type, dummy->ne, dummy->n_dims, file_index, offset);
TensorStorage tensor_storage(prefix + name, dummy->type, dummy->ne, ggml_n_dims(dummy), file_index, offset);

GGML_ASSERT(ggml_nbytes(dummy) == tensor_storage.nbytes());

Expand Down Expand Up @@ -1417,6 +1417,9 @@ bool ModelLoader::load_tensors(std::map<std::string, struct ggml_tensor*>& tenso
if (pair.first.find("cond_stage_model.transformer.text_model.encoder.layers.23") != std::string::npos) {
continue;
}
if (pair.first.find("alphas_cumprod") != std::string::npos) {
continue;
}

if (pair.first.find("alphas_cumprod") != std::string::npos) {
continue;
Expand Down
17 changes: 2 additions & 15 deletions tae.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -278,9 +278,6 @@ struct TinyDecoder {
ggml_tensor* conv_final_w; // [output_channels, channels, 3, 3]
ggml_tensor* conv_final_b; // [output_channels]

ggml_tensor* in_scale_1d3; // [1]
ggml_tensor* in_scale_3; // [1]

TinyDecoder() {
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].in_channels = channels;
Expand Down Expand Up @@ -351,16 +348,6 @@ struct TinyDecoder {
}

final_block.init_params(ctx);

// initialize constants scales
in_scale_1d3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
in_scale_3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, in_scale_1d3);
float scale_1d3 = 1.0f / 3.0f;
ggml_backend_tensor_set(in_scale_1d3, &scale_1d3, 0, sizeof(scale_1d3));
ggml_allocr_alloc(alloc, in_scale_3);
float scale_3 = 3.0f;
ggml_backend_tensor_set(in_scale_3, &scale_3, 0, sizeof(scale_3));
}

void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
Expand Down Expand Up @@ -391,9 +378,9 @@ struct TinyDecoder {

ggml_tensor* forward(ggml_context* ctx, ggml_tensor* z) {
// torch.tanh(x / 3) * 3
auto h = ggml_scale(ctx, z, in_scale_1d3);
auto h = ggml_scale(ctx, z, 1.0f / 3.0f);
h = ggml_tanh_inplace(ctx, h);
h = ggml_scale(ctx, h, in_scale_3);
h = ggml_scale(ctx, h, 3.0f);

// conv(4, 64)
h = ggml_nn_conv_2d(ctx, h, conv_input_w, conv_input_b, 1, 1, 1, 1);
Expand Down
12 changes: 2 additions & 10 deletions unet.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -182,8 +182,6 @@ struct SpatialTransformer {

std::vector<Transformer> transformers;

struct ggml_tensor* attn_scale;

// proj_out
struct ggml_tensor* proj_out_w; // [in_channels, in_channels, 1, 1]
struct ggml_tensor* proj_out_b; // [in_channels,]
Expand All @@ -202,7 +200,6 @@ struct SpatialTransformer {
mem_size += 2 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm_w/norm_b
mem_size += 2 * in_channels * in_channels * 1 * 1 * ggml_type_sizef(GGML_TYPE_F16); // proj_in_w/proj_out_w
mem_size += 2 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // proj_in_b/proj_out_b
mem_size += 1 * ggml_type_sizef(GGML_TYPE_F32); // attn_scale

// transformer
for (auto& transformer : transformers) {
Expand All @@ -226,11 +223,6 @@ struct SpatialTransformer {
proj_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels);
proj_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels);

attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, attn_scale);
float scale = 1.0f / sqrt((float)d_head);
ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale));

// transformer
for (auto& transformer : transformers) {
transformer.norm1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels);
Expand Down Expand Up @@ -332,7 +324,7 @@ struct SpatialTransformer {
x = ggml_reshape_2d(ctx, x, c, h * w * n); // [N * h * w, in_channels]
struct ggml_tensor* q = ggml_mul_mat(ctx, transformer.attn1_q_w, x); // [N * h * w, in_channels]
#if !defined(SD_USE_FLASH_ATTENTION) || defined(SD_USE_CUBLAS) || defined(SD_USE_METAL)
q = ggml_scale_inplace(ctx, q, attn_scale);
q = ggml_scale_inplace(ctx, q, 1.0f / sqrt((float)d_head));
#endif
q = ggml_reshape_4d(ctx, q, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head]
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, h * w, d_head]
Expand Down Expand Up @@ -380,7 +372,7 @@ struct SpatialTransformer {
context = ggml_reshape_2d(ctx, context, context->ne[0], context->ne[1] * context->ne[2]); // [N * max_position, hidden_size]
struct ggml_tensor* q = ggml_mul_mat(ctx, transformer.attn2_q_w, x); // [N * h * w, in_channels]
#if !defined(SD_USE_FLASH_ATTENTION) || defined(SD_USE_CUBLAS) || defined(SD_USE_METAL)
q = ggml_scale_inplace(ctx, q, attn_scale);
q = ggml_scale_inplace(ctx, q, 1.0f / sqrt((float)d_head));
#endif
q = ggml_reshape_4d(ctx, q, d_head, n_head, h * w, n); // [N, h * w, n_head, d_head]
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, h * w, d_head]
Expand Down
9 changes: 1 addition & 8 deletions vae.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -118,8 +118,6 @@ struct AttnBlock {
struct ggml_tensor* proj_out_w; // [in_channels, in_channels, 1, 1]
struct ggml_tensor* proj_out_b; // [in_channels,]

struct ggml_tensor* attn_scale;

size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += 6 * in_channels * ggml_type_sizef(GGML_TYPE_F32); // norm_w/norm_b/q_b/k_v/v_b/proj_out_b
Expand All @@ -140,11 +138,6 @@ struct AttnBlock {

proj_out_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, in_channels, in_channels);
proj_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels);

attn_scale = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, attn_scale);
float scale = 1.0f / sqrt((float)in_channels);
ggml_backend_tensor_set(attn_scale, &scale, 0, sizeof(scale));
}

void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
Expand Down Expand Up @@ -181,7 +174,7 @@ struct AttnBlock {
k = ggml_reshape_3d(ctx, k, c, h * w, n); // [N, h * w, in_channels]

auto w_ = ggml_mul_mat(ctx, k, q); // [N, h * w, h * w]
w_ = ggml_scale_inplace(ctx, w_, attn_scale);
w_ = ggml_scale_inplace(ctx, w_, 1.0f / sqrt((float)in_channels));
w_ = ggml_soft_max_inplace(ctx, w_);

v = ggml_reshape_3d(ctx, v, h * w, c, n); // [N, in_channels, h * w]
Expand Down