Skip to content

Support latest SDXL LoRA names #216

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 10 additions & 11 deletions examples/cli/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -686,27 +686,26 @@ int main(int argc, const char* argv[]) {
// Resize input image ...
if (params.height % 64 != 0 || params.width % 64 != 0) {
int resized_height = params.height + (64 - params.height % 64);
int resized_width = params.width + (64 - params.width % 64);
int resized_width = params.width + (64 - params.width % 64);

uint8_t *resized_image_buffer = (uint8_t *)malloc(resized_height * resized_width * 3);
uint8_t* resized_image_buffer = (uint8_t*)malloc(resized_height * resized_width * 3);
if (resized_image_buffer == NULL) {
fprintf(stderr, "error: allocate memory for resize input image\n");
free(input_image_buffer);
return 1;
}
stbir_resize(input_image_buffer, params.width, params.height, 0,
resized_image_buffer, resized_width, resized_height, 0, STBIR_TYPE_UINT8,
3 /*RGB channel*/, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr
);
stbir_resize(input_image_buffer, params.width, params.height, 0,
resized_image_buffer, resized_width, resized_height, 0, STBIR_TYPE_UINT8,
3 /*RGB channel*/, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);

// Save resized result
free(input_image_buffer);
input_image_buffer = resized_image_buffer;
params.height = resized_height;
params.width = resized_width;
params.height = resized_height;
params.width = resized_width;
}
}

Expand Down
13 changes: 9 additions & 4 deletions lora.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ struct LoraModel : public GGMLModule {
std::string file_path;
ModelLoader model_loader;
bool load_failed = false;
bool applied = false;
bool applied = false;

LoraModel(ggml_backend_t backend,
ggml_type wtype,
Expand Down Expand Up @@ -91,10 +91,15 @@ struct LoraModel : public GGMLModule {
k_tensor = k_tensor.substr(0, k_pos);
replace_all_chars(k_tensor, '.', '_');
// LOG_DEBUG("k_tensor %s", k_tensor.c_str());
if (k_tensor == "model_diffusion_model_output_blocks_2_2_conv") { // fix for SDXL
k_tensor = "model_diffusion_model_output_blocks_2_1_conv";
std::string lora_up_name = "lora." + k_tensor + ".lora_up.weight";
if (lora_tensors.find(lora_up_name) == lora_tensors.end()) {
if (k_tensor == "model_diffusion_model_output_blocks_2_2_conv") {
// fix for some sdxl lora, like lcm-lora-xl
k_tensor = "model_diffusion_model_output_blocks_2_1_conv";
lora_up_name = "lora." + k_tensor + ".lora_up.weight";
}
}
std::string lora_up_name = "lora." + k_tensor + ".lora_up.weight";

std::string lora_down_name = "lora." + k_tensor + ".lora_down.weight";
std::string alpha_name = "lora." + k_tensor + ".alpha";
std::string scale_name = "lora." + k_tensor + ".scale";
Expand Down
17 changes: 13 additions & 4 deletions model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -211,6 +211,8 @@ std::string convert_sdxl_lora_name(std::string tensor_name) {
{"unet", "model_diffusion_model"},
{"te2", "cond_stage_model_1_transformer"},
{"te1", "cond_stage_model_transformer"},
{"text_encoder_2", "cond_stage_model_1_transformer"},
{"text_encoder", "cond_stage_model_transformer"},
};
for (auto& pair_i : sdxl_lora_name_lookup) {
if (tensor_name.compare(0, pair_i.first.length(), pair_i.first) == 0) {
Expand Down Expand Up @@ -446,18 +448,25 @@ std::string convert_tensor_name(const std::string& name) {
} else {
new_name = name;
}
} else if (contains(name, "lora_up") || contains(name, "lora_down") || contains(name, "lora.up") || contains(name, "lora.down")) {
} else if (contains(name, "lora_up") || contains(name, "lora_down") ||
contains(name, "lora.up") || contains(name, "lora.down") ||
contains(name, "lora_linear")) {
size_t pos = new_name.find(".processor");
if (pos != std::string::npos) {
new_name.replace(pos, strlen(".processor"), "");
}
pos = new_name.find_last_of('_');
pos = new_name.rfind("lora");
if (pos != std::string::npos) {
std::string name_without_network_parts = new_name.substr(0, pos);
std::string network_part = new_name.substr(pos + 1);
std::string name_without_network_parts = new_name.substr(0, pos - 1);
std::string network_part = new_name.substr(pos);
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '.');
new_key = convert_sdxl_lora_name(new_key);
replace_all_chars(new_key, '.', '_');
size_t npos = network_part.rfind("_linear_layer");
if (npos != std::string::npos) {
network_part.replace(npos, strlen("_linear_layer"), "");
}
if (starts_with(network_part, "lora.")) {
network_part = "lora_" + network_part.substr(5);
}
Expand Down
2 changes: 1 addition & 1 deletion stable-diffusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1610,7 +1610,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
if (sd_ctx->sd->stacked_id && !sd_ctx->sd->pmid_lora->applied) {
t0 = ggml_time_ms();
sd_ctx->sd->pmid_lora->apply(sd_ctx->sd->tensors, sd_ctx->sd->n_threads);
t1 = ggml_time_ms();
t1 = ggml_time_ms();
sd_ctx->sd->pmid_lora->applied = true;
LOG_INFO("pmid_lora apply completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
if (sd_ctx->sd->free_params_immediately) {
Expand Down