Skip to content

mahendra/kafka-python

 
 

Repository files navigation

Kafka Python client

This module provides low-level protocol support for Apache Kafka as well as high-level consumer and producer classes. Request batching is supported by the protocol as well as broker-aware request routing. Gzip and Snappy compression is also supported for message sets.

Compatible with Apache Kafka 0.8.1

http://kafka.apache.org/

License

Copyright 2013, David Arthur under Apache License, v2.0. See LICENSE

Status

I'm following the version numbers of Kafka, plus one number to indicate the version of this project. The current version is 0.8.1-1. This version is under development, APIs are subject to change.

Usage

High level

from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
from kafka.producer import SimpleProducer

kafka = KafkaClient("localhost", 9092)

producer = SimpleProducer(kafka, "my-topic")
producer.send_messages("some message")
producer.send_messages("this method", "is variadic")

consumer = SimpleConsumer(kafka, "my-group", "my-topic")
for message in consumer:
    print(message)

# Gevent based consumer
from kafka import KAFKA_GEVENT_DRIVER
consumer = SimpleConsumer(kafka, "my-group", "my-topic",
                          driver_type=KAFKA_GEVENT_DRIVER)

# Threaded consumer
from kafka import KAFKA_THREAD_DRIVER
consumer = SimpleConsumer(kafka, "my-group", "my-topic",
                          driver_type=KAFKA_THREAD_DRIVER)

kafka.close()

Keyed messages

from kafka.client import KafkaClient
from kafka.producer import KeyedProducer
from kafka.partitioner import HashedPartitioner, RoundRobinPartitioner

kafka = KafkaClient("localhost", 9092)

# HashedPartitioner is default
producer = KeyedProducer(kafka, "my-topic")
producer.send("key1", "some message")
producer.send("key2", "this methode")

producer = KeyedProducer(kafka, "my-topic", partitioner=RoundRobinPartitioner)

Multiprocess consumer

from kafka.consume import MultiConsumer

# This will split the number of partitions among two processes (drivers)
consumer = MultiConsumer(kafka, "my-topic", "my-group", num_drivers=2)

# This will spawn processes such that each handles 2 partitions max
consumer = MultiConsumer(kafka, "my-topic", "my-group",
                         partitions_per_driver=2)

for message in consumer:
    print(message)

for message in consumer.get_messages(count=5, block=True, timeout=4):
    print(message)

# Gevent based consumer
from kafka import KAFKA_GEVENT_DRIVER
consumer = MultiConsumer(kafka, "my-group", "my-topic", num_drivers=2,
                         driver_type=KAFKA_GEVENT_DRIVER)

# Threaded consumer
from kafka import KAFKA_THREAD_DRIVER
consumer = MultiConsumer(kafka, "my-group", "my-topic",
                         partitions_per_driver=2,
                         driver_type=KAFKA_THREAD_DRIVER)

Zookeeper support

The Zookeeper supports creating a producer and SimpleConsumer. The Zookeeper consumer takes care of rebalancing partitions for a topic among a consumer-group.

NOTE: This will work only with other kafka-python clients and will not work with Java/Scala clients (this is a TODO)

from kafka.zookeeper import ZSimpleProducer, ZKeyedProducer
from kafka.zookeeper import ZSimpleConsumer
from kafka.partitioner import HashedPartitioner

# Zookeeper SimpleProducer
# Takes all arguments similar to SimpleProducer
producer = ZSimpleProducer("127.0.0.1:2181", "my-topic")
producer.send_messages("msg1", "msg2")

# Zookeeper KeyedProducer
# Takes all arguments similar to KeyedProducer
producer = ZKeyedProducer("127.0.0.1:2181,127.0.0.1:2182", "my-topic",
                          partitioner=HashedPartitioner)
producer.send("key1", "msg1")

# Zookeeper consumer.
# Takes all arguments similar to SimpleConsumer
consumer = ZSimpleConsumer("127.0.0.1:2181", "my-group", "my-topic")

for msg in consumer:
    print msg

consumer.get_messages(block=True, timeout=10)

# Zookeeper consumer managing offsets
# Older kafka brokers do not support a proper offset fetch/commit
# By enabling the manage_offsets=True option, ZSimpleConsumer will
# do this job. It does the job by storing and retrieving offsets
# in Zookeeper
consumer = ZSimpleConsumer("127.0.0.1:2181", "my-group", "my-topic",
                           manage_offsets=True)

Low level

from kafka.client import KafkaClient
kafka = KafkaClient("localhost", 9092)
req = ProduceRequest(topic="my-topic", partition=1,
    messages=[KafkaProdocol.encode_message("some message")])
resps = kafka.send_produce_request(payloads=[req], fail_on_error=True)
kafka.close()

resps[0].topic      # "my-topic"
resps[0].partition  # 1
resps[0].error      # 0 (hopefully)
resps[0].offset     # offset of the first message sent in this request

Install

Install with your favorite package manager

Pip:

git clone https://github.com/mumrah/kafka-python
pip install ./kafka-python

Setuptools:

git clone https://github.com/mumrah/kafka-python
easy_install ./kafka-python

Using setup.py directly:

git clone https://github.com/mumrah/kafka-python
cd kafka-python
python setup.py install

Optional Snappy install

Download and build Snappy from http://code.google.com/p/snappy/downloads/list

wget http://snappy.googlecode.com/files/snappy-1.0.5.tar.gz
tar xzvf snappy-1.0.5.tar.gz
cd snappy-1.0.5
./configure
make
sudo make install

Install the python-snappy module

pip install python-snappy

Tests

Run the unit tests

These are broken at the moment

tox ./test/test_unit.py

Run the integration tests

First, checkout the Kafka source

git submodule init
git submodule update
cd kafka-src
./sbt update
./sbt package

And then run the tests. This will actually start up real local Zookeeper instance and Kafka brokers, and send messages in using the client.

tox ./test/test_integration.py

About

Kafka protocol support in Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%