@@ -4193,11 +4193,10 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4193
4193
of the observations at (x[i],y[i]).
4194
4194
4195
4195
If *C* is specified, it specifies values at the coordinate
4196
- (x[i],y[i]). These values are accumulated for each hexagonal
4196
+ (x[i], y[i]). These values are accumulated for each hexagonal
4197
4197
bin and then reduced according to *reduce_C_function*, which
4198
- defaults to numpy's mean function (np.mean). (If *C* is
4199
- specified, it must also be a 1-D sequence of the same length
4200
- as *x* and *y*.)
4198
+ defaults to `numpy.mean`. (If *C* is specified, it must also
4199
+ be a 1-D sequence of the same length as *x* and *y*.)
4201
4200
4202
4201
Parameters
4203
4202
----------
@@ -4213,7 +4212,7 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4213
4212
tuple with two elements specifying the number of hexagons
4214
4213
in the *x*-direction and the *y*-direction.
4215
4214
4216
- bins : { 'log'} or int or sequence, optional, default is *None*
4215
+ bins : 'log' or int or sequence, optional, default is *None*
4217
4216
If *None*, no binning is applied; the color of each hexagon
4218
4217
directly corresponds to its count value.
4219
4218
@@ -4289,11 +4288,9 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4289
4288
4290
4289
Returns
4291
4290
-------
4292
- object
4293
- a :class:`~matplotlib.collections.PolyCollection` instance; use
4294
- :meth:`~matplotlib.collections.PolyCollection.get_array` on
4295
- this :class:`~matplotlib.collections.PolyCollection` to get
4296
- the counts in each hexagon.
4291
+ polycollection
4292
+ A `.PolyCollection` instance; use `.PolyCollection.get_array` on
4293
+ this to get the counts in each hexagon.
4297
4294
4298
4295
If *marginals* is *True*, horizontal
4299
4296
bar and vertical bar (both PolyCollections) will be attached
@@ -6060,11 +6057,11 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6060
6057
----------
6061
6058
x : (n,) array or sequence of (n,) arrays
6062
6059
Input values, this takes either a single array or a sequence of
6063
- arrays which are not required to be of the same length
6060
+ arrays which are not required to be of the same length.
6064
6061
6065
- bins : integer or sequence or 'auto' , optional
6062
+ bins : int or sequence or str , optional
6066
6063
If an integer is given, ``bins + 1`` bin edges are calculated and
6067
- returned, consistent with :func: `numpy.histogram`.
6064
+ returned, consistent with `numpy.histogram`.
6068
6065
6069
6066
If `bins` is a sequence, gives bin edges, including left edge of
6070
6067
first bin and right edge of last bin. In this case, `bins` is
@@ -6081,9 +6078,12 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6081
6078
6082
6079
Unequally spaced bins are supported if *bins* is a sequence.
6083
6080
6084
- If Numpy 1.11 is installed, may also be ``'auto'``.
6081
+ With Numpy 1.11 or newer, you can alternatively provide a string
6082
+ describing a binning strategy, such as 'auto', 'sturges', 'fd',
6083
+ 'doane', 'scott', 'rice', 'sturges' or 'sqrt', see
6084
+ `numpy.histogram`.
6085
6085
6086
- Default is taken from the rcParam `` hist.bins` `.
6086
+ The default is taken from :rc:` hist.bins`.
6087
6087
6088
6088
range : tuple or None, optional
6089
6089
The lower and upper range of the bins. Lower and upper outliers
@@ -6096,7 +6096,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6096
6096
6097
6097
Default is ``None``
6098
6098
6099
- density : boolean , optional
6099
+ density : bool , optional
6100
6100
If ``True``, the first element of the return tuple will
6101
6101
be the counts normalized to form a probability density, i.e.,
6102
6102
the area (or integral) under the histogram will sum to 1.
@@ -6120,7 +6120,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6120
6120
6121
6121
Default is ``None``
6122
6122
6123
- cumulative : boolean , optional
6123
+ cumulative : bool , optional
6124
6124
If ``True``, then a histogram is computed where each bin gives the
6125
6125
counts in that bin plus all bins for smaller values. The last bin
6126
6126
gives the total number of datapoints. If *normed* or *density*
@@ -6180,7 +6180,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6180
6180
6181
6181
Default is ``None``
6182
6182
6183
- log : boolean , optional
6183
+ log : bool , optional
6184
6184
If ``True``, the histogram axis will be set to a log scale. If
6185
6185
*log* is ``True`` and *x* is a 1D array, empty bins will be
6186
6186
filtered out and only the non-empty ``(n, bins, patches)``
@@ -6194,14 +6194,14 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6194
6194
6195
6195
Default is ``None``
6196
6196
6197
- label : string or None, optional
6197
+ label : str or None, optional
6198
6198
String, or sequence of strings to match multiple datasets. Bar
6199
6199
charts yield multiple patches per dataset, but only the first gets
6200
6200
the label, so that the legend command will work as expected.
6201
6201
6202
6202
default is ``None``
6203
6203
6204
- stacked : boolean , optional
6204
+ stacked : bool , optional
6205
6205
If ``True``, multiple data are stacked on top of each other If
6206
6206
``False`` multiple data are arranged side by side if histtype is
6207
6207
'bar' or on top of each other if histtype is 'step'
@@ -6555,10 +6555,10 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6555
6555
6556
6556
Parameters
6557
6557
----------
6558
- x, y: array_like, shape (n, )
6558
+ x, y : array_like, shape (n, )
6559
6559
Input values
6560
6560
6561
- bins: [ None | int | [int, int] | array_like | [array, array] ]
6561
+ bins : None or int or [int, int] or array_like or [array, array]
6562
6562
6563
6563
The bin specification:
6564
6564
@@ -6582,7 +6582,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6582
6582
xmax], [ymin, ymax]]. All values outside of this range will be
6583
6583
considered outliers and not tallied in the histogram.
6584
6584
6585
- normed : boolean , optional, default: False
6585
+ normed : bool , optional, default: False
6586
6586
Normalize histogram.
6587
6587
6588
6588
weights : array_like, shape (n, ), optional, default: None
@@ -6612,7 +6612,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6612
6612
6613
6613
Other Parameters
6614
6614
----------------
6615
- cmap : { Colormap, string} , optional
6615
+ cmap : Colormap or str , optional
6616
6616
A :class:`matplotlib.colors.Colormap` instance. If not set, use rc
6617
6617
settings.
6618
6618
@@ -6621,7 +6621,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6621
6621
scale luminance data to ``[0, 1]``. If not set, defaults to
6622
6622
``Normalize()``.
6623
6623
6624
- vmin/vmax : { None, scalar} , optional
6624
+ vmin/vmax : None or scalar, optional
6625
6625
Arguments passed to the `Normalize` instance.
6626
6626
6627
6627
alpha : ``0 <= scalar <= 1`` or ``None``, optional
0 commit comments