Skip to content

ENH: new date formatter #10841

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .flake8
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,7 @@ per-file-ignores =
examples/text_labels_and_annotations/tex_demo.py: E402
examples/text_labels_and_annotations/watermark_text.py: E402
examples/ticks_and_spines/auto_ticks.py: E501
examples/ticks_and_spines/date_concise_formatter.py: E402
examples/user_interfaces/canvasagg.py: E402
examples/user_interfaces/embedding_in_gtk3_panzoom_sgskip.py: E402
examples/user_interfaces/embedding_in_gtk3_sgskip.py: E402
Expand Down
40 changes: 40 additions & 0 deletions doc/users/next_whats_new/concise_date_formatter.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
:orphan:

New date formatter: `~.dates.ConciseDateFormatter`
--------------------------------------------------

The automatic date formatter used by default can be quite verbose. A new
formatter can be accessed that tries to make the tick labels appropriately
concise.

.. plot::

import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np

# make a timeseries...
base = datetime.datetime(2005, 2, 1)
dates = np.array([base + datetime.timedelta(hours= 2 * i)
for i in range(732)])
N = len(dates)
np.random.seed(19680801)
y = np.cumsum(np.random.randn(N))

lims = [(np.datetime64('2005-02'), np.datetime64('2005-04')),
(np.datetime64('2005-02-03'), np.datetime64('2005-02-15')),
(np.datetime64('2005-02-03 11:00'), np.datetime64('2005-02-04 13:20'))]
fig, axs = plt.subplots(3, 1, constrained_layout=True)
for nn, ax in enumerate(axs):
# activate the formatter here.
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)

ax.plot(dates, y)
ax.set_xlim(lims[nn])
axs[0].set_title('Concise Date Formatter')

plt.show()
183 changes: 183 additions & 0 deletions examples/ticks_and_spines/date_concise_formatter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
"""
================================================
Formatting date ticks using ConciseDateFormatter
================================================

Finding good tick values and formatting the ticks for an axis that
has date data is often a challenge. `~.dates.ConciseDateFormatter` is
meant to improve the strings chosen for the ticklabels, and to minimize
the strings used in those tick labels as much as possible.

.. note::

This formatter is a candidate to become the default date tick formatter
in future versions of Matplotlib. Please report any issues or
suggestions for improvement to the github repository or mailing list.

"""
import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np

#############################################################################
# First, the default formatter.

base = datetime.datetime(2005, 2, 1)
dates = np.array([base + datetime.timedelta(hours=(2 * i))
for i in range(732)])
N = len(dates)
np.random.seed(19680801)
y = np.cumsum(np.random.randn(N))

fig, axs = plt.subplots(3, 1, constrained_layout=True, figsize=(6, 6))
lims = [(np.datetime64('2005-02'), np.datetime64('2005-04')),
(np.datetime64('2005-02-03'), np.datetime64('2005-02-15')),
(np.datetime64('2005-02-03 11:00'), np.datetime64('2005-02-04 13:20'))]
for nn, ax in enumerate(axs):
ax.plot(dates, y)
ax.set_xlim(lims[nn])
# rotate_labels...
for label in ax.get_xticklabels():
label.set_rotation(40)
label.set_horizontalalignment('right')
axs[0].set_title('Default Date Formatter')
plt.show()

#############################################################################
# The default date formater is quite verbose, so we have the option of
# using `~.dates.ConciseDateFormatter`, as shown below. Note that
# for this example the labels do not need to be rotated as they do for the
# default formatter because the labels are as small as possible.

fig, axs = plt.subplots(3, 1, constrained_layout=True, figsize=(6, 6))
for nn, ax in enumerate(axs):
locator = mdates.AutoDateLocator(minticks=3, maxticks=7)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)

ax.plot(dates, y)
ax.set_xlim(lims[nn])
axs[0].set_title('Concise Date Formatter')

plt.show()

#############################################################################
# If all calls to axes that have dates are to be made using this converter,
# it is probably most convenient to use the units registry where you do
# imports:

import matplotlib.units as munits
converter = mdates.ConciseDateConverter()
munits.registry[np.datetime64] = converter
munits.registry[datetime.date] = converter
munits.registry[datetime.datetime] = converter

fig, axs = plt.subplots(3, 1, figsize=(6, 6), constrained_layout=True)
for nn, ax in enumerate(axs):
ax.plot(dates, y)
ax.set_xlim(lims[nn])
axs[0].set_title('Concise Date Formatter')

plt.show()

#############################################################################
# Localization of date formats
# ============================
#
# Dates formats can be localized if the default formats are not desirable by
# manipulating one of three lists of strings.
#
# The ``formatter.formats`` list of formats is for the normal tick labels,
# There are six levels: years, months, days, hours, minutes, seconds.
# The ``formatter.offset_formats`` is how the "offset" string on the right
# of the axis is formatted. This is usually much more verbose than the tick
# labels. Finally, the ``formatter.zero_formats`` are the formats of the
# ticks that are "zeros". These are tick values that are either the first of
# the year, month, or day of month, or the zeroth hour, minute, or second.
# These are usually the same as the format of
# the ticks a level above. For example if the axis limts mean the ticks are
# mostly days, then we label 1 Mar 2005 simply with a "Mar". If the axis
# limits are mostly hours, we label Feb 4 00:00 as simply "Feb-4".
#
# Note that these format lists can also be passed to `.ConciseDateFormatter`
# as optional kwargs.
#
# Here we modify the labels to be "day month year", instead of the ISO
# "year month day":

fig, axs = plt.subplots(3, 1, constrained_layout=True, figsize=(6, 6))

for nn, ax in enumerate(axs):
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
formatter.formats = ['%y', # ticks are mostly years
'%b', # ticks are mostly months
'%d', # ticks are mostly days
'%H:%M', # hrs
'%H:%M', # min
'%S.%f', ] # secs
# these are mostly just the level above...
formatter.zero_formats = [''] + formatter.formats[:-1]
# ...except for ticks that are mostly hours, then it is nice to have
# month-day:
formatter.zero_formats[3] = '%d-%b'

formatter.offset_formats = ['',
'%Y',
'%b %Y',
'%d %b %Y',
'%d %b %Y',
'%d %b %Y %H:%M', ]
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)

ax.plot(dates, y)
ax.set_xlim(lims[nn])
axs[0].set_title('Concise Date Formatter')

plt.show()

#############################################################################
# Registering a converter with localization
# =========================================
#
# `.ConciseDateFormatter` doesn't have rcParams entries, but localization
# can be accomplished by passing kwargs to `~.ConciseDateConverter` and
# registering the datatypes you will use with the units registry:

import datetime

formats = ['%y', # ticks are mostly years
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Re-align as above.

'%b', # ticks are mostly months
'%d', # ticks are mostly days
'%H:%M', # hrs
'%H:%M', # min
'%S.%f', ] # secs
# these can be the same, except offset by one level....
zero_formats = [''] + formats[:-1]
# ...except for ticks that are mostly hours, then its nice to have month-day
zero_formats[3] = '%d-%b'
offset_formats = ['',
'%Y',
'%b %Y',
'%d %b %Y',
'%d %b %Y',
'%d %b %Y %H:%M', ]

converter = mdates.ConciseDateConverter(formats=formats,
zero_formats=zero_formats,
offset_formats=offset_formats)

munits.registry[np.datetime64] = converter
munits.registry[datetime.date] = converter
munits.registry[datetime.datetime] = converter

fig, axs = plt.subplots(3, 1, constrained_layout=True, figsize=(6, 6))
for nn, ax in enumerate(axs):
ax.plot(dates, y)
ax.set_xlim(lims[nn])
axs[0].set_title('Concise Date Formatter registered non-default')

plt.show()
Loading