Skip to content

Fix tuple markers #16770

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lib/matplotlib/markers.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,6 +345,7 @@ def _set_tuple_marker(self):
self._joinstyle = 'bevel'
else:
raise ValueError(f"Unexpected tuple marker: {marker}")
self._transform = Affine2D().scale(0.5).rotate_deg(rotation)

def _set_mathtext_path(self):
"""
Expand Down
107 changes: 107 additions & 0 deletions lib/matplotlib/tests/test_marker.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import markers
from matplotlib.path import Path
from matplotlib.testing.decorators import check_figures_equal

import pytest

Expand All @@ -26,3 +28,108 @@ def test_marker_path():
path = Path([[0, 0], [1, 0]], [Path.MOVETO, Path.LINETO])
# Checking this doesn't fail.
marker_style.set_marker(path)


class UnsnappedMarkerStyle(markers.MarkerStyle):
"""
A MarkerStyle where the snap threshold is force-disabled.

This is used to compare to polygon/star/asterisk markers which do not have
any snap threshold set.
"""
def _recache(self):
super()._recache()
self._snap_threshold = None


@check_figures_equal()
def test_poly_marker(fig_test, fig_ref):
ax_test = fig_test.add_subplot()
ax_ref = fig_ref.add_subplot()

# Note, some reference sizes must be different because they have unit
# *length*, while polygon markers are inscribed in a circle of unit
# *radius*. This introduces a factor of np.sqrt(2), but since size is
# squared, that becomes 2.
size = 20**2

# Squares
ax_test.scatter([0], [0], marker=(4, 0, 45), s=size)
ax_ref.scatter([0], [0], marker='s', s=size/2)

# Diamonds, with and without rotation argument
ax_test.scatter([1], [1], marker=(4, 0), s=size)
ax_ref.scatter([1], [1], marker=UnsnappedMarkerStyle('D'), s=size/2)
ax_test.scatter([1], [1.5], marker=(4, 0, 0), s=size)
ax_ref.scatter([1], [1.5], marker=UnsnappedMarkerStyle('D'), s=size/2)

# Pentagon, with and without rotation argument
ax_test.scatter([2], [2], marker=(5, 0), s=size)
ax_ref.scatter([2], [2], marker=UnsnappedMarkerStyle('p'), s=size)
ax_test.scatter([2], [2.5], marker=(5, 0, 0), s=size)
ax_ref.scatter([2], [2.5], marker=UnsnappedMarkerStyle('p'), s=size)

# Hexagon, with and without rotation argument
ax_test.scatter([3], [3], marker=(6, 0), s=size)
ax_ref.scatter([3], [3], marker='h', s=size)
ax_test.scatter([3], [3.5], marker=(6, 0, 0), s=size)
ax_ref.scatter([3], [3.5], marker='h', s=size)

# Rotated hexagon
ax_test.scatter([4], [4], marker=(6, 0, 30), s=size)
ax_ref.scatter([4], [4], marker='H', s=size)

# Octagons
ax_test.scatter([5], [5], marker=(8, 0, 22.5), s=size)
ax_ref.scatter([5], [5], marker=UnsnappedMarkerStyle('8'), s=size)

ax_test.set(xlim=(-0.5, 5.5), ylim=(-0.5, 5.5))
ax_ref.set(xlim=(-0.5, 5.5), ylim=(-0.5, 5.5))


def test_star_marker():
# We don't really have a strict equivalent to this marker, so we'll just do
# a smoke test.
size = 20**2

fig, ax = plt.subplots()
ax.scatter([0], [0], marker=(5, 1), s=size)
ax.scatter([1], [1], marker=(5, 1, 0), s=size)
ax.set(xlim=(-0.5, 0.5), ylim=(-0.5, 1.5))


# The asterisk marker is really a star with 0-size inner circle, so the ends
# are corners and get a slight bevel. The reference markers are just singular
# lines without corners, so they have no bevel, and we need to add a slight
# tolerance.
@check_figures_equal(tol=1.45)
def test_asterisk_marker(fig_test, fig_ref, request):
ax_test = fig_test.add_subplot()
ax_ref = fig_ref.add_subplot()

# Note, some reference sizes must be different because they have unit
# *length*, while asterisk markers are inscribed in a circle of unit
# *radius*. This introduces a factor of np.sqrt(2), but since size is
# squared, that becomes 2.
size = 20**2

def draw_ref_marker(y, style, size):
# As noted above, every line is doubled. Due to antialiasing, these
# doubled lines make a slight difference in the .png results.
ax_ref.scatter([y], [y], marker=UnsnappedMarkerStyle(style), s=size)
if request.getfixturevalue('ext') == 'png':
ax_ref.scatter([y], [y], marker=UnsnappedMarkerStyle(style),
s=size)

# Plus
ax_test.scatter([0], [0], marker=(4, 2), s=size)
draw_ref_marker(0, '+', size)
ax_test.scatter([0.5], [0.5], marker=(4, 2, 0), s=size)
draw_ref_marker(0.5, '+', size)

# Cross
ax_test.scatter([1], [1], marker=(4, 2, 45), s=size)
draw_ref_marker(1, 'x', size/2)

ax_test.set(xlim=(-0.5, 1.5), ylim=(-0.5, 1.5))
ax_ref.set(xlim=(-0.5, 1.5), ylim=(-0.5, 1.5))